分子科学研究所装置開発室は研究所内部のニーズだけではなく、大学共同利用機関の一施設として、所外のニーズにも答えて、分子科学に必要な実験装置等を設計/製作し、また新しい装置を研究/開発することを中心に技術開発を進めておりますが、外部との交流はますます活発かつ重要になってきていると感じます。国立天文台、名古屋大学、東京大学生産技術研究所、東北大学、神戸大学、京都大学、広島大学などと高度な技術を駆使しなくてはできない装置開発に貢献することができた（ている）事は、当装置開発技術職員のレベルの高さを誇ってよいことであり、また、技術職員自らのさらなるレベルアップの上でも好ましいことと考えます。また、このような外部との連携という意味では、19年度の新しい動きとして、岡崎ものづくり推進協議会や、中野製作所との交流があります。このような高度な技術レベルを有する、もの作りの企業との交流も、最近の加工装置技術の非常に早い進歩を考えると、財政的にも対応不可能な装置技術を利用できる機会ともなり、無理の無い範囲でのこのような連携も非常に重要になると考えます。科学技術の進歩は速く、たえず柔軟に状況に対応して技術力を高めることに専念する必要性を感じます。

18年度は、鈴井光一さんの日本化学会化学技術有功賞受賞の他、水谷伸雄さん、吉田久史さんの日中シンポジウム（ナノケミカルバイオロジー）出席と調査などの嬉しいこと、楽しいことが有りましたが、特筆すべきこととしては、装置開発室としては初めて外部評価を受けることでした。評価委員として多大な労力を払ってくださいました、名古屋大学田原譲教授および北陸先端科学技術大学院大学山田省二教授のお二人には、装置開発室自身や技術職員の将来を考える上で、非常に参考となるご意見をいただき心から感謝する次第です。技術職員も一人一人面接を受け、良い意味での刺激を受けることができたと感じております。

平成20年度からは鈴井光一さんが技術課長となり装置開発室のリーダーを離れ、後任として吉田久史さんが着任されます。新しい体制でもこれまで同様、皆で力をあわせて装置開発技術力の向上に努力して行きたいと思います。

室長
宇理須恒雄
<table>
<thead>
<tr>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>構成スタッフ</td>
<td>1</td>
</tr>
<tr>
<td>イベント in 2007</td>
<td>2</td>
</tr>
<tr>
<td>施設利用</td>
<td>7</td>
</tr>
<tr>
<td>技術セミナー</td>
<td>8</td>
</tr>
<tr>
<td>受賞・発表</td>
<td>9</td>
</tr>
<tr>
<td>外部評価</td>
<td>10</td>
</tr>
<tr>
<td>岡崎ものづくり推進協議会</td>
<td>14</td>
</tr>
<tr>
<td>技術報告</td>
<td>15</td>
</tr>
<tr>
<td>技術レポート</td>
<td>18</td>
</tr>
<tr>
<td>2007年 工作依頼リスト</td>
<td>42</td>
</tr>
<tr>
<td>2007年 製作品</td>
<td>45</td>
</tr>
<tr>
<td>トピックス</td>
<td>50</td>
</tr>
<tr>
<td>出張報告</td>
<td>53</td>
</tr>
<tr>
<td>設備関連</td>
<td>56</td>
</tr>
</tbody>
</table>
装置開発室長（併任）

<table>
<thead>
<tr>
<th>姓氏</th>
<th>氏名</th>
<th>担当機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>宇理須恒雄</td>
<td>URISU, Tsuneo</td>
<td>生体分子情報部門 教授</td>
</tr>
</tbody>
</table>

技術職員

<table>
<thead>
<tr>
<th>部門</th>
<th>姓氏</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>機械グループ</td>
<td>鈴井光一</td>
<td>SUZUI, Mitsukazu</td>
</tr>
<tr>
<td></td>
<td>水谷伸雄</td>
<td>MIZUTANI, Nobuo</td>
</tr>
<tr>
<td></td>
<td>青山正樹</td>
<td>AOYAMA, Masaki</td>
</tr>
<tr>
<td></td>
<td>矢野隆行</td>
<td>YANO, Takayuki</td>
</tr>
<tr>
<td></td>
<td>近藤聖彦</td>
<td>KONDO, Takuhiko</td>
</tr>
<tr>
<td>電子回路グループ</td>
<td>吉田久史</td>
<td>YOSHIDA, Hisashi</td>
</tr>
<tr>
<td></td>
<td>内山功一</td>
<td>UCHIYAMA, Kouichi</td>
</tr>
<tr>
<td></td>
<td>豊田朋範</td>
<td>TOYODA, Tomonori</td>
</tr>
</tbody>
</table>

ガラス加工グループ

<table>
<thead>
<tr>
<th>姓氏</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>永田正明</td>
<td>NAGATA, Masaaki</td>
</tr>
</tbody>
</table>

技術支援員

<table>
<thead>
<tr>
<th>姓氏</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>宮下治美</td>
<td>MIYASHITA, Harumi</td>
</tr>
<tr>
<td>高松宣輝</td>
<td>TAKAMATSU, Yoshiteru</td>
</tr>
</tbody>
</table>

事務支援員

<table>
<thead>
<tr>
<th>姓氏</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>浦野宏子</td>
<td>URANO, Hiroko</td>
</tr>
</tbody>
</table>
イベント in 2007

1月

23日 設置開発室運営委員会

2月

5日 生理学研究所技術課主催「岡崎ものづくり推進協議会」との交流企画（株）高木科学研究所の概要と技術報告会出席

3月

1日〜2日 平成18年度名古屋大学総合技術研究会

口頭発表2件
「自動分子定規作成装置の製作」内山功一他
「メカニカル速度選別ディスクの製作」矢野隆行他

15日 北陸先端科学技术大学院大学 三谷教授記念フォーラム「分子・物質の状態と変革」

1981年から1993年まで設置開発室の専任助教授として在籍され、ご自身の研究はもとより施設の運営から技術指導まで多大な貢献をされた先生の退職記念フォーラム出席
（吉田、鈴井、永田、水谷）
4月
4日 FSK技術打合せと工場視察
25日〜26日 電子ビーム溶接機（大規模メンテナンス）
分子研創設時に設置した電子ビーム溶接機のメンテナンスを実施
（記事56ページ参照）

5月
8日〜9日 機械工作安全講習会
16日 松尾技術職員 新人研修

イベント in 2007

各技術分野の研修日
電子回路 5月16日
機械技術 6月4、7、12日
ガラス工作 6月19日
<table>
<thead>
<tr>
<th>事件 in 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 日 ～ 24 日</td>
</tr>
<tr>
<td>22 日 ～ 24 日</td>
</tr>
<tr>
<td>29 日</td>
</tr>
<tr>
<td>6月</td>
</tr>
<tr>
<td>4日 ～ 15日</td>
</tr>
<tr>
<td>14日</td>
</tr>
</tbody>
</table>
7月

22日 岡崎ものづくり推進協議会 交流会
（機械技術）
（記事14ページ参照）

30日 中野製作所 技術打合せと工場見学

8月

22日〜23日 中学生職場体験
岡崎市立竜海中学校 2年生 男子2名 女子1名
（記事51ページ参照）

27日 外部評価（記事10ページ参照）

9月

26日 光ヶ丘女子高等学校 見学

10月

9日 岡崎ものづくり推進協議会 交流会
（電子回路技術）
（記事14ページ参照）
イベント in 2007

11月

5日～9日
創成放電加工機を用いた微細な蒸着用マスクの試作
東京大学生産技術研究所（矢野）
（記事34ページ参照）

8日～11日
日中ナノ・ケミカルバイオロジー・シンポジウム出席（吉田、水谷）
中国科学院化学研究所（北京）
（記事54ページ参照）

19日
X線望遠鏡ミラーシェル製作に関するセミナー（機械技術）
（記事8ページ参照）

30日～12/1日
放電加工技術セミナー出席（鈴井、矢野）
（記事52ページ参照）

12月

12日～13日
受入研修 九州大学理学研究院付属工場
山之内真司技術職員、伴和紀技術職員
（機械技術）
分子研の共同利用研究における施設利用として、実験装置の製作依頼を受ける利用形態を始めて3年目となった。申請件数、事前の問い合わせなど、動向は前年と同様で大きな変化はなかった。

この中で分子科学とは少し離れた分野からの課題が2件あった。1件は大阪府立大学の小川英夫教授より申請された、高精度楕円金属鏡の開発である。この課題は回転楕円面の一部を金属加工によって製作したミリ波サブミリ波（周波数350GHz帯）用の凹面鏡を、装置開発室に設置されている非接触三次元測定機を用いて楕円形状計測を行い、より理論値にフィットした形状が得られる最適加工方法の検討を行う課題である。19年度前期、後期と比較的長期間に渡って試行錯誤が繰り返され、計測技術を始め加工に関しては機械、工具、ワークの設置方法など、多くの要素技術が得られた。もう1件は国立天文台の岡田則夫主任研究技師より申請された、ALMA計画で使用する受信機部品のハーメチックウェーブガイドの製作方法確立である。平成16年度に設置されたY軸付CNC旋盤を用いて多数個を同時に、かつ高精度に製作する方法を検討し試作を行うものである。いずれの課題も分子科学研究の分野に直接関係した機器部品ではなく天文観測用として用いられる機能部品であるが、新しい技術の獲得を行った事は、施設利用の制度を有効に活用できた事例の1つであると考えている。

その他の施設利用申請の課題一覧を下表に掲載する。

施設利用課題一覧

<table>
<thead>
<tr>
<th>申込者名</th>
<th>所属</th>
<th>研究課題（備考）</th>
</tr>
</thead>
<tbody>
<tr>
<td>高橋正彦</td>
<td>東北大学多元物質科学研究所</td>
<td>配向分子の電子運動量分光装置のための多次元同時計測電子回路の開発</td>
</tr>
<tr>
<td>小川英夫</td>
<td>大阪府立大学 大学院理学系研究科</td>
<td>ミリ波サブミリ波領域でのビーム伝送系に用いる高精度楕円鏡の開発（前期）（後期）</td>
</tr>
<tr>
<td>大河原浩</td>
<td>生理学研究所 技術課</td>
<td>電子顕微鏡用位相板および位相板ホルダーの微細加工検討</td>
</tr>
<tr>
<td>岡田則夫</td>
<td>国立天文台 先端技術センター</td>
<td>ミリ波サブミリ波観測装置に組み込む高精度ハーメチックウェーブガイドの製作技術の確立</td>
</tr>
<tr>
<td>長門研吉</td>
<td>高知工業高等専門学校 機械工学科</td>
<td>ドリフトチューブ用電源の整備</td>
</tr>
<tr>
<td>秋田素子</td>
<td>広島大学 理学研究科</td>
<td>水熱合成用オートクレープの製作</td>
</tr>
<tr>
<td>富宅喜代一</td>
<td>神戸大学 理学研究科</td>
<td>気体核磁気共鳴分光装置用磁気共鳴セルの開発</td>
</tr>
</tbody>
</table>
技術セミナー

X 線望遠鏡ミラーシェル製作に関する技術セミナー

平成 18 年度後期に名古屋大学エコトピア研究所の田原謙教授より施設利用申請された X 線望遠鏡製作における技術開発で、今年度は望遠鏡の反射鏡基板（アルミ製ミラーシェル）の製作方法について名古屋大学全学技術センター第一装置開発グループと共同で行った。現在、実際に運用されている X 線望遠鏡のミラーシェルは 1/4 円のアルミ製薄板を母型に沿わせて熱成形し、同サイズのものを 4 個並べて一円周に取り組んだ構造である。今回、新しい衛星に搭載する X 線望遠鏡として、一体型ミラーシェルが考案され望遠鏡ミラーとしての実証研究が行われることになった。そこで、一体型のテーパー薄肉円筒の製作方法は、(1) アルミのへら押し（塑性加工）と切削による製作、(2) 厚肉円筒から最終形状まで旋盤加工による製作、(3) 電子ビーム溶接による薄肉円筒製作の 3 方法を考えた。

本技術セミナーは名古屋大学と分子研で、それぞれの加工方法の試作を分担して行い、その技術的な問題点について議論する場として、平成 19 年 11 月 19 日に開催した。以下に、セミナーのプログラム等を掲載する。また、分子研で分担した汎用旋盤による加工と電子ビーム溶接による加工について、旋盤による切削加工法は 38 ページに詳細を掲載し、電子ビーム溶接法については平成 20 年 3 月に開催される核融合科学技術研究会において報告する予定である。

セミナー内容

<table>
<thead>
<tr>
<th>日時</th>
<th>2007 年 11 月 19 日（月） 13:30 ～</th>
</tr>
</thead>
<tbody>
<tr>
<td>場所</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td></td>
<td>計算科学研究センター 2F 会議室（200 室）</td>
</tr>
<tr>
<td>プログラム</td>
<td></td>
</tr>
<tr>
<td>13:30 ～</td>
<td>超薄肉 X 線望遠鏡基板加工法に関する経過</td>
</tr>
<tr>
<td></td>
<td>名古屋大学全学技術センター 増田忠志</td>
</tr>
<tr>
<td>14:00 ～</td>
<td>分割治具およびワックス固定法による X 線望遠鏡ミラーシェルの加工</td>
</tr>
<tr>
<td></td>
<td>名古屋大学全学技術センター 鳥居龍晴</td>
</tr>
<tr>
<td>14:30 ～</td>
<td>汎用旋盤による X 線望遠鏡ミラーシェルの加工</td>
</tr>
<tr>
<td></td>
<td>分子科学研究所装置開発室 水谷伸雄</td>
</tr>
<tr>
<td>15:00 ～</td>
<td>休憩及び予備時間</td>
</tr>
<tr>
<td>15:30 ～</td>
<td>電子ビーム溶接法による X 線望遠鏡ミラーシェルの製作</td>
</tr>
<tr>
<td></td>
<td>分子科学研究所装置開発室 近藤聖彦</td>
</tr>
<tr>
<td>16:00 ～</td>
<td>討論、意見交換</td>
</tr>
</tbody>
</table>
受賞・発表

研究会発表

<table>
<thead>
<tr>
<th>研究会、会議名</th>
<th>タイトル</th>
<th>発表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成18年度名古屋大学総合技術研究会200年3月1日～2日</td>
<td>自動分子定規作成装置の製作（口頭発表）</td>
<td>内山功一鈴井光一矢野隆行鈴井光一岡田美智雄笠井俊夫</td>
</tr>
<tr>
<td></td>
<td>メカニカル速度選別ディスクの製作（口頭発表）</td>
<td></td>
</tr>
</tbody>
</table>

[1] 大阪大学大学院理学研究科

受賞

鈴井光一氏に日本化学会化学技術有効賞

精密機械技術を駆使した革新的実験機器の設計・製作
Design and fabrication of innovative experimental equipments in the molecular science and related fields making full use of precision machine technology.

技術課機器開発班（装置開発室）の鈴井光一氏が、「精密機械技術を駆使した革新的実験機器の設計・製作」に関する業績として日本化学会の化学技術有効賞を受賞された。鈴井光一氏は装置開発室の機械グループのリーダーとして分子科学の実験研究に必要とされる装置を研究者と共に開発して来られ、分子科学の学術研究に大きく貢献された。その業績が高く評価され今回の受賞につながった。受賞理由となった業績には、「High-Mass用TOF質量分析装置」、「高密度配向分子ビーム発生装置」、「マイクロチッププレーザー装置」、「バイオセンサー・バイオチップ」など、いずれも高度な精密機械設計と製作技術がなくてはならないものばかりの開発に貢献したことが挙げられ、これらの中には新規な発想による機械設計で特許になっているものもある。しかしながら、実際にはこれだけではなく、昭和57年頃の極端紫外光実験施設（UVSOR）の立ち上げ時期には、そこで利用される各種分光器の建設に参加し、機械設計や製作の面で貢献されている。その分光器製作では精密機械技術が必要であり、ここで我々が積み重ねてきた精密機械技術を生かして低温実験装置、光学実験装置など多くの実験装置づくりをされてきた。このような実績は数え上げれば枚挙に暇がないほどである。鈴井光一氏は平成7年から3年間、人事交流で名古屋大学の理学部に赴任され、そこでは分子科学とは異なる学術領域の装置開発に携わってこられた。たとえば月探査用の観測装置に搭載する耐衝撃軸受けの開発、衛星搭載用のX線検出器のベリリウム窓の開発・製作、ダイアモンド切削による非球面金属ミラーなど超精密加工などがある。これらの技術や経験を平成10年に分子研に戻られてから分子科学の研究機器開発に効果的に融合させることで、研究を支える装置開発をより広くものへと推進し、分子研の実験研究に大きな貢献をされている。近未来では、鈴井光一氏が培ってきた技術を基にナノマイクロレベルの微細な機械加工技術に力を注いでおられ、マイクロ流路技術など新たな技術を必要とする研究にも大いに貢献されている。現在、分子科学研究も世界的に厳しい競争の中で置かれている。そこで独創性の高い大きな成果を生み出すための原動力として鈴井光一氏にはその一翼を担って頂いていることは間違いない。今後さらなるご活躍を期待する。

（宇理須恒雄 記、分子研レターズ56より抜粋）
外部評価

装置開発室は平成16年度より、専任の教育職員を置かない技術職員だけで構成された施設として運営されてきた。今年度はその新しい体制から3年が経過したことで、施設としての現状について点検・評価ならびに今後の運営方針を検討するために、外部から下記の評価委員を招き外部評価委員会を実施した。

所外評価委員： 田原 譲（名古屋大学、教授）
山田省二（北陸先端科学技術大学院大学、教授）

日時： 平成19年8月27日（月）13:00 ～

スケジュール： 13:00-13:20 宇理须教授挨拶、分子研・装置開発室概要説明（鈴井同席）
13:20-15:00 電子回路グループ3名（吉田、内山、豊田）業務報告
　ガラス加工1名（永田）業務報告
15:00-17:00 機械グループ5名（鈴井、近藤、水谷、矢野、青山）業務報告
17:00-17:30 施設設備見学
17:30-18:00 講評、意見交換

以下に評価委員からの報告書より評価レポートの部分を抜粋して掲載させて頂く。

北陸先端科学技術大学院大学 山田省二 教授

1) 全体の印象
インタビューが、発表者と評価委員2名というほぼクローズした雰囲気で、かつ比較的なじみのある場所で行われたせいか、発表はおおむね良くまとまっており短い時間にそれぞれの業務のエッセンスが簡潔に紹介された。また、発表態度からは、各自の業務に控えめではあるがそれなりの興味とプライドを持って取り組んでいる様子が推測され好ましい印象を持った。ただ、装置開発室の業務の全体の支援業務の中での位置づけ、あるいは他の技術職員グループとの比較のような話が余りなく、分子研全体の中での役割分担などもあまりよくわからなかった気がする（「分子研リポート」には概要の構成員の項、及び技術室の項大体の説明はあるものの詳細な記述は無かったようである）。 「構成員」の記述から類推すると、技術課1、2班を併せて装置開発室と称しているように感じられる。
昨今の国立大学等の独立法人化に伴い、「競争」と「評価」が横行し技術職員でさえも様々な事務作業をこなすことが多く、ややもすると労働強化に繋がりかねない事態が散見されるようであるが、インタビューで聞き取った限りでは、依頼業務を含む通常業務は所定の勤務時間内ではばこなされている現状が確認された。このことは、日常的業務で手一杯になることなく将来に向けた各々の基礎力・技術力の涵養にも一定の日常的時間が割ける余裕があることを意味し極めて重要である。また健康上の観点からもこのような仕事の平均的ペースを将来にわたって維持することの重要さは今後もっと意識されても良いのではないかと考えられる。

2) 装置開発室の現状等

2-1) 装置開発室の分子科学研究における重要度、果たすべき役割、現状など
いうまでもなく装置開発（室）の分子科学研究における重要度は一般的にはさらに増大しつつあると考えられる。ただ当該分野における関連装置は、その種類は広く多岐にわたり、装置1台の規模は大きくなると
外部評価

同時にその複雑さはさらに増しつつあると考えられる。そのような装置をたとえ小規模な物を中心とするにしても限られた人数と時間すべてをカバーするのは事実上不可能である。したがって、修理などのルーチン的仕事以外に取り組む創造的な業務としては当然ある技術分野にフォーカスせざるを得ない。その分野を取捨選択する基準は、恐らく分子研全体の運営方針に基づく中期計画に沿った研究開発計画に沿ったものになるであろう。分子研として発展させるべき研究分野を支援する業務が人員的にも予算的にも優先されることが望ましいのではないかと思われる。

既にインタビューの中で、いくつかの具体的な方針、
a) 超精密機械加工 / 研磨
b) マイクロ微細加工
c) NMR プローブ
d) NMR 関連各種回路
e) 各種極低温用測定セル
などが紹介されていたがこれらは恐らく分子研全体の研究体制整備、レベルアップの方向と一致しているのではないかという印象を持った。今後全体計画との関連をさらに意識した具体的な装置開発方針の提案と推進が内部的にも外部的にもより望ましいのではないかという。この際特に参考になるのは、外、特に最先端の研究を推進している大学、研究機関、企業との共同研究、交流を意識的に維持継続し、常に技術レベルの客観的なチェックを進めることが望ましい。常にリフレッシュされ維持された高い技術レベルこそがひいては内部からの要求にもより高いレベルで答えることを可能にするものである。

2-2) 現在の装置開発室の技術レベル

ガラス工作に関しては良くわからないが、回路と機械工作に関しては、長年（技術室発足から30年）の蓄積を反映し、かなり高いレベルにあるように思われた。今後このレベルの引き継ぎ、維持、発展が要請されているが、人的リソースの増強が特らない場合は、成るべき特化すべき領域を広げその分野での技術の最先端の進歩に追従すべき日々レベルアップを図ることに集中すべきであろう。この際特に参考になるのは、外、特に最先端の研究を推進している大学、研究機関、企業との共同研究、交流を意識的に維持継続し、常に技術レベルの客観的なチェックを進めることが望ましい。常にリフレッシュされ維持された高い技術レベルこそがひいては内部からの要求にもより高いレベルで答えることを可能にするものである。

3) 問題点と解決策

3-1) 組織的観点

機械加工や回路試作に関する依頼件数と人手に関しては、現在の所ほぼバランスが取れているようであるが、今後外部の依頼等も積極的に引き受けるか、或は外部からの依頼が急増するような事態に立ち至ったときどのように組織的に対応するかはあらかじめ考えておく必要があるかもしれない。特に組織を変更しないで対処するには、例えば機械加工で既に実施しているような非常勤職員の活用を臨機応変に進める方策も有効であろう。但しこの際技術職員と年齢的に近い若年労働者でなく熟年労働者の雇用を優先する配慮が良いかもしれない。

3-2) 技術的観点

全般的に見て装置開発室の現在の技術レベルは、分子研の研究に密接に関連する分野を中心にかなり高いと考えられる。今後これを維持発展させるためには、新技術職員の採用（増員）や現技術職員の日常的な業務の重要性を一環として学習と研修を継続することが必要である。技術室全体での長期人員計画の策定と学習・研修のための時間を現技術職員に組織的に保証していくことがますます重要になってくると考えられる。

3-3) 将来的観点

分子研中期計画等組織全体の長期計画と連動して、各グループが中期目標、或は中期重点取り組み目項目等を設定し、その達成目標と計画をそれぞれのメンバーが共有してその実現に協力して取り組むこと等が望ましいと考えられる。現在の機械加工グループの当面の目標である「マイクロ機械加工技術（の開拓）」に関しても、組織的に付けと長期的計画の中での位置付けがより明確にされることが望ましいのではないか。
3-4) 提言など

技術室、及び装置開発室の業務の内外の先端的研究との関連やそれらの研究への貢献をより組織的公式的
に明らかにする仕組み（研究者が執筆する論文における貢献の明示、謝辞の徹底と貢献内容のデータベース
作り及びその公開等）を作ることが重要である。これにより技術職員が自らの仕事の意義を再認識するのみ
ならず高いプライドをもって将来業務に取り組むことが可能となり、担当業務を意欲的に推進するための大
きなモチベーションとなりうるものである。

また「分子研リポート」によるとこれまで149名の技術職員が在籍し、111名が転出している。この流動
性の高さは技術職員としては他の日本国内の諸機関と比較しても特筆すべきレベルであると思われるが、異
動等が比較的困難と言われる装置開発室の職員に関しても流動性を高める工夫が必要であると思われる。

この点に関しても具体的な方向と達成目標等が議論されて良いと思われる。

名古屋大学エコトピア研究所 田原 譲 教授

1. 活動状況

電子回路グループ 3 名、ガラス加工 1 名、機械グループ 5 名の各構成員が研究者への技術支援という本
務については、積極的にかつ誇りを持って取り組んでおられることを感じました。小さな組織でありながら、
研究者の特殊な技術要求に対して様々なアイデアを出して設計、試作、製作を行っている様子がよくわかり
ました。その成果はここで作った装置をもとに行われた研究で、所内の研究者が研究賞を受けていることな
どでも明らかと思われます。また柱となる技術支援の他にも、工作実習の実施・技術研究会の実施・所長奨
励研究の実施など間接的な技術支援や、独自技術の開発を含めた自己研鑽が行われており、積極的な活動の
様子がうかがわれます。

2. 組織と運営

評価者が所属する大学には研究室に密着した形での仕事をする技術職員と、共通施設の技術職員という2
種類の形態がまだ残っているのに対し、分子研装置開発室では後者の性格の職員の集合体であり、少人数の
組織としては明確な役割分担と効率的な仕事の進め方のできる組織として確立しているように思われます。
しかしその分研究者との密度の高い交流がもたらす研究・技術両側面のレベルの向上という側面が少し弱め
られているのかもしれない、ということを感じました。ただし評価者が所属する大学との間では、技術職員
どうしの相互交流によりお互いの技術レベルの向上を図っており評価できます。

3. 設備の状況

機械加工に関連した必要最小限の設備は揃っていますが老朽化した装置も目立ちます。現在の高度化した
技術の時代に汎用精密機械加工装置の導入は予算的に厳しいものがありますが、ある程度の投資は継続的に
行われるべきと思われます。その際にこの装置開発室の技術の特徴をより明確にしていくことが重要でしょう。
またこれに関連し一見ハイテクの対極にあるような古きさい加工装置を使いながら、研究の鍵となるような
技術ができ出される可能性をなくさないために、熟練技術者の経験（例えばガラス加工など）を知的財産と
して残す努力をぜひお願いしたいと思います。
4. 情報発信と社会貢献

業務報告集は分かりやすくよくまとめられており、技術情報の発信として十分レベルに達していると思われますが、欲を言えばこの組織の特徴を強調して示すような工夫や、技術検索で所内外の研究者が成果を使えるような工夫（設計・製作・計測などのノウハウのデータベース化、例えば用いた要求仕様・解決策・失敗例・成功理由なども加えて、キーワード検索で過去の経験が新しい装置開発に活かせるようなもの）もぜひ考えていほしいと思います。社会貢献としては研究所の一般公開がその一端であり技術職員の方も十分貢献されているように感じました。
岡崎ものづくり推進協議会

岡崎商工会議所(岡崎ものづくり推進協議会)との連携

岡崎商工会議所は産学官連携活動を通じて地元製造業の活性化と競争力向上を目的に「岡崎ものづくり推進協議会」を設立し多くの事業を行っている。この協議会と自然科学研究機構岡崎3研究所との連携事業の一環で、会員である市内の中小企業との交流会を、平成19年6月22日および10月9日に実施した。商工会議所が推し進める「ものづくり」には製造業を主体としていることから、分子研技術課の機器開発班ならびに電子機器・ガラス機器開発班が主に対応することとなった。この技術課の2つの班の構成員は装置開発室の技術職員であることから、第1回は機械グループ、第2回は電子回路グループ・ガラス工作が中心となって交流会を実施した。

交流会は機械グループおよび電子回路の持つ技術領域に関連深い企業、また研究部門からの依頼開発で直面している技術的問題点などを課題とした内容から対応する業種の企業が選定され実施された。第1回の参加企業は機械系を中心に鍛造、精密加工、放電加工、研磨、溶接、接着の分野から7社、第2回は電子系を中心にプリント基板設計、電子回路設計の分野から4社の参加で行われた。交流会の内容は、自己紹介の後、レーザー機器開発研究の平等研究グループの研究室見学および装置開発室の施設見学を行い、その後、相互の技術内容紹介およびそれぞれの技術班が取り組んでいる技術課題などから「ものづくり連携」の可能性について意見交換を行った。

この交流会を機に現在、マイクロチップレーザー用ヒートシンクの新規製作法開発および有機磁性体の研究で用いる圧力セルの銅合金系高強度材料の開発2件について、塑性加工技術の企業(株)中部冷間の協力が得られ、「ものづくり連携」として開発が進んでいる。

「ものづくり連携」の実施例

平成18年に行ったチタン銅(Cu-Ti)材に冷間加工と熱処理で材料強度を改良し、磁化率測定セルの製作[1]で、強磁性の物質が混入している事が判明し精密な磁化率測定が困難であることが解った。原因はエアハンマーによる自由鍛造(塑性加工)で行った際に表面に付着した鉄粉を材料中にたたき込み、また形状を変化させるので材料中に包まれた可能性が考えられる。この問題点の解決策として、(株)中部冷間より高圧プレスによる新たな塑性加工法が試みられた。12月の時点で写真に示すように加工度(断面積減少率)約48%で有効長さ50mmの冷間加工が出来上がっている。加工後の硬度と熱処理および強磁性物質の有無について調べ、現在セルの製作を進んでいる。

技術報告

超精密加工機を用いた脆性光学部材の切削加工技術の開発

青山正樹

名古屋大学全学技術センターおよび国立天文台先端技術センターと共同で国立天文台に設置されている超精密非球面加工機を用いてゲルマニウム、シリコンなどの金属単結晶、ステンレスなどの合金および硫化亜鉛 (ZnS)、セレン化亜鉛 (ZnSe)、フッ化バリウム (BaF2) などの多結晶材料表面の微細加工法の開発を行っている。本課題は、国立天文台共同開発研究費により 3 年計画で実施しているものであり、脆性光学部材の加工に対する要素技術の蓄積、向上および深化を目的としている。

平成 18 年度は、ZnS の旋削加工およびフライカット法による基礎加工条件の調査、ステンレス鋼の楕円振動切削法による超精密加工実験を行った。平成 19 年度は ZnS の楕円振動切削法による臨界切込量などの基本的な加工データの調査を行うとともに、イマージョングレーティングの製作への応用を目指して楕円振動切削法およびフライカット法による溝列創成加工を行い、グレーティングなどの光学素子への適用の有効性を確認した。表 1 に 19 年度に実施した 5 回の実験項目を示した。また、平成 20 年 2 月に装置開発室で開催した超精密セミナーで報告した内容を掲載する。

表 1 平成 19 年度共同開発実験実施項目

<table>
<thead>
<tr>
<th>実験日時</th>
<th>実験内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2007年7月23日-27日)</td>
<td>楕円振動切削法による ZnS の臨界切込量の調査および溝列創成加工テスト。</td>
</tr>
<tr>
<td>(2007年9月4日-7日)</td>
<td>楕円振動切削法による直角バイトの最適切込条件の調査および溝列創成加工テスト</td>
</tr>
<tr>
<td>(2007年10月15日-17日)</td>
<td>楕円振動切削法による ZnS 加工面への切り屑付着に及ぼすバイトすくい角および切削油材の影響</td>
</tr>
<tr>
<td>(2007年10月30日-11月2日)</td>
<td>フライカット法による ZnS の溝列創成加工実験</td>
</tr>
<tr>
<td>(2007年11月26日-30日)</td>
<td>直角バイトによるフライカットでの ZnS 共面粗さに関する調査実験</td>
</tr>
</tbody>
</table>

超精密セミナー
2007年度国立天文台共同開発研究 結果報告
技術報告

粗さ測定結果

- 粗さは約25～30μm級。粗さがフライカット（4μm以下）に比べて大きい理由は、機械加工によるパ ImmutableListhidden
了とワークとの相対位置変動による局部的な振動マーケです。
- 振動マークの幅は、±30μm±±50μm
- フライカットにおいて細工振動切削では、振動の影響を受けやすいです。
(切削速度の差・フライカット700mm/min、横円振動90mm/min)
- 振動位置を加工面を基にして判定することは難しい。
- 最新の加工機械では、振動量による振幅は±5μm。

楕円振動切削R溝加工テスト

20mm/minでの振動軌跡の違いによる表面切削量の影響

- 振動なしの
- 粗さ成形量
- 0.2μm

溝列加工テスト結果（1）

- 加工開始直後からエッジ部に欠けが発生
- 加工距離2.5m位から加工面の荒れが顕著

第1回目実験での問題点

- ワックス固定による試料の変形
- 300次にわたり試料をワックスで固定していたため、ワックスの
- 吸収により3μm程度変形し、加工時に切削変形が生じました。

支持ウィヤをはずし、支持試料台にワックスで固定し着後、試料面
- 度0.6μm以下とした。
- エッジ部の欠け
- フライカットでの実験では加工面にクラックの生じない溝列切削量は3μm程
- 度であったが、エッジ部の欠けを生じない溝列切削量は著しく低くなる必
- つながある。

角バイトによる最適切削テスト

各切削におけるエッジ部の欠けの生じない切削量について調べた。
- 2mm位で約3.5mm加工したクラックの発生の有無を確認。
- また加工面、溝の形に加工および加工工数の影響の有無を確認。

100μm、2μm、3μm、4μm

- 加工条件
- 切削速度1500mm/min、
- 送り速度1.5μm/秒、
- 最大直径1μm

溝列加工テスト結果（2）

エッジ部の欠けの生じない切削量1μmでグレインティング形状加工を行った。

- 加工条件
- 送り速度4μm/min、
- 切削速度1μm、振動数3.9kHz、振動変形4μm、
- 面面に欠けの無いグレインティング形状の加工が可能。

溝列加工の影響は特に見られなかった。
技術報告

切りくず凝着に関する確認テスト
- 前回すくい角15°での加工時よりも切りくずの凝着の割合が半減
- CRCでのテストでは、切りくずの凝着は全くなし、エッジ部のクラックが軽いに比べ多い。

切りくず凝着に関するまとめ
- CRCで切りくずの凝着がなくなくなった理由
 - エッジとCRCでは粘性が違う。CRCの方が粘性が大きい。
 - 化学吸着の形成。
- CRCで欠けが増大した理由
 - CRCでは、加工時に生じる微細な切削表面に化学吸着し再溶着しにくいため、欠けを発生しやすいのでは？
 - (レピピング効果)
- アップカットである楕円振動切削では、加工面とバイト間に切りくずを置き込みやすく吸着・むしろをおこしやすい。
- 3μmの深さを加工するために、1μmの切削で3回加工を行うために溝切りしきが生じ、切りくずが置き込みやすくなかった。
- すくい角を15°から0°に変更し少し改善されたが、大きな効果はなかった。

フライカット溝創成加工テスト
- 昨年度行った溝創成加工テストとの比較
 - (ドライ、ウエットでの加工面粗さ、欠け発生距離の比較)

フライカットおよび楕円振動切削まとめ
- 楕円振動切削では加工後の振動特性の影響を受けやすく、加工面粗さがフライカットに比べて大きく。
- 楕円振動切削では粘性材料のエッジ形成加工では、フライカット(ダウン)にてエッジの欠けが発生しやすい。
- アップカット加工のため切りくず置き込みのトラブルを生じやすい。
- 切削距離が1, 1m以上の非結晶材料(Ga17μm、東芝)に比べて著しく短い。
 - ハイマスは非結晶材料であるため、加工面に様々な結晶面が存在し、加工面に非結晶面が残存する作用が大きく影響しているのではないか？
1. はじめに
近年、機器組み込み用として多数のワンチップマイコンが製品化され、8 ビットを中心に多くの電子機器の中で使用されている。周辺回路を殆ど必要としないという手軽さとその汎用性の高さから、筆者もシーケンス制御、データ通信、計測回路など多岐にわたって利用している。Microchip Technology 社の PIC マイクロコントローラはデバイスの種類が豊富で技術情報も入手しやすく、特に使用することが多いデバイスである。今回、その上位機種である 16 ビットの dsPIC を用いてビーム電流補正装置の製作を行ったので報告する。

2. dsPIC の特徴とプログラム開発環境
16 ビットの PIC マイコン・シリーズには現在 PIC24,dsPIC30,dsPIC33 シリーズがある。表 1 に各 PIC マイコンの概要を示す。これらは 8 ビット PIC の上位機種という位置付けて、PIC の持つ ADC,Timer,UART といった豊富な周辺機能に加えて、処理速度の向上やメモリ・プロセッサの増加がなされている。さらには、メモリ・アドレスリング・モード、汎用レジスタの数、乗算や除算命令を含む命令の数などの機能が増強されている。特に、dsPIC シリーズには高速な積和演算を行うためのハードウェアを含めた DSP(Digital Signal Processor)に必要な機能が備わっており、このことから Digital Signal Controller と呼ばれている。dsPIC には dsPIC30 と dsPIC33 のファミリーがある。これらは表 1 に示す違いの他、dsPIC30 の動作電圧が 2.5~5.5V であるのに対し dsPIC33 は 3.0~3.6V である。

表 1 PIC マイコンの 8 ビット・シリーズと 16 ビット・シリーズの特徴比較

<table>
<thead>
<tr>
<th>データ処理単位</th>
<th>PIC10</th>
<th>PIC12</th>
<th>PIC16</th>
<th>PIC18</th>
<th>PIC24F</th>
<th>PIC24H</th>
<th>dsPIC30</th>
<th>dsPIC33</th>
</tr>
</thead>
<tbody>
<tr>
<td>最高速度 [MIPS]</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>40</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>最大プログラム・メモリ・サイズ</td>
<td>0.375 〜 0.75 /0.5K</td>
<td>0.75 〜 3.5 /8K</td>
<td>0.75 〜 14 /8K</td>
<td>0 〜 128 /1M</td>
<td>16 〜 96 /4M</td>
<td>12 〜 256 /4M</td>
<td>6.5 〜 144 /4M</td>
<td>12 〜 256 /4M</td>
</tr>
<tr>
<td>A-D 変換分解能 [ビット]</td>
<td>8</td>
<td>8 〜 10</td>
<td>8 〜 12</td>
<td>10 〜 12</td>
<td>10</td>
<td>10 〜 12</td>
<td>10 〜 12</td>
<td>10 〜 12</td>
</tr>
<tr>
<td>DSP 機能</td>
<td>なし</td>
<td>なし</td>
<td>あり</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>あり</td>
<td>なし</td>
</tr>
<tr>
<td>端子数 [本]</td>
<td>6</td>
<td>8</td>
<td>14〜64</td>
<td>18〜100</td>
<td>28〜100</td>
<td>18〜100</td>
<td>18〜80</td>
<td>18〜100</td>
</tr>
</tbody>
</table>

PIC マイコンのプログラム開発には Microchip Technology 社から無償で提供される統合開発環境の MPLAB IDE を使用した。MPLAB はアセンブラや C によるプログラム開発、シミュレータによるデバッグ環境、対象デバイスへのマシン・コード (HEX ファイル) の書き込みなどの一連の操作を統合管理するものである。ただし、C コンパイラとプログラム書き込み器は別途用意する必要がある。今回、dsPIC の開発には C コンパイラとして同社の MPLAB C30 の評価版を使用した。また、プログラム書き込み器には同社の PICkit 2 を購入した。
このプログラムは、PIC と dsPIC の F タイプ（フラッシュ・メモリ）のデバイスに In-circuit Programming する安価な書き込み器であり、PC とは USB で接続される。これに Micro Application Laboratory 社の MK247-S を取り付け、40 ピン DIP タイプに対応する書き込み器として使用している。ただし、MPLAB IDE v.7.52 では PICkit 2に対応していないので、PICkit2 に付属するプログラムを使用して書き込みを行っている。図 1 および図 2 に dsPIC のプログラム開発環境を示す。

3. ビーム電流補正装置の構成と仕様

dsPIC の応用として、分子科学研究所の放射光実験施設を使った赤外・テラヘルツ分光測定用のビーム電流補正装置を製作した。これは赤外・テラヘルツ分光で得られる反射・吸収スペクトルの絶対値を求めるために、測定試料からのスペクトル強度を放射光の電子ビームの強度で逐次補正するための装置である。装置の構成を図 3 に示す。測定するスペクトル強度は、バッファ・アンプを通じて ±10V の測定レンジで AD コンバータ（Analog Devices, AD7671）[2] で取り込まれる。放射光の電子ビームの強度は、0~5V の測定レンジで同様にして取り込まれる。dsPIC は随時二つの AD コンバータに変換開始指令を送り、変換が終了するのを待って 16 ビットのデータを取り込む。そして、それらのデータの割り算を計算し、演算結果を電圧値として DA コンバータ（Analog Devices, AD5546）[3] で出力するというものである。一般に、赤外・テラヘルツ分光で必要とされるサンプリング速度は 10KSPS 程度なので、前述の一連の処理にはそれ以上の速度が求められる。

図 3 ビーム電流補正装置の構成

本装置で使用した dsPIC は、dsPIC30 シリーズの中の dsPIC30F4013 である。このデバイスを選択した理由は、試作・開発段階での取り扱いが容易な DIP タイプであることと入出力ポート数の多いことにある。dsPIC30F4013 を 7.3728MHz の水晶発振子 ×16 倍のクロックで動作させているので、命令実行スピードは約 29.5MIPS、1 命令の実行時間は約 33.9nS となる[4]。I/O ポート数は 30 であり DIP タイプで供給されるものの中では最大であるが、それでもワード長のポートが確保できなかった。そのために AD コンバータ
および DA コンバータとのデータ転送は、ポート B の下位 8 ビットを使ってパイト長で行った。この
ためにデータ転送に関する処理が増えることになっ
たが、dsPIC の処理速度が十分早く特に問題に
はならなかった。なお、AD コンバータの変換速度
は 1MSPS、DA コンバータのセットリングタイム
は 500nS であり、要求されるサンプリング速度と
比較して十分に高速なものを選択した。製作した
ビーム電流補正装置の回路基板を図 4 に示す。

図 4 ビーム電流補正装置の回路基板

4. 演算処理プログラムおよび動作テスト

プログラムの中で命令サイクルを一番多く必要とするのは、割り算のための演算処理であると予測される。
C 言語を利用すれば実数での演算も可能であるが、処理の高速化のために割り算は全て整数型の除算関数を
用いた。標準 C ライブラリには integer 型 (16 ビット) と long 型 (32 ビット) のオペランドによる整数除
算の商と余りを求める関数 (div_t、ldiv_t) がありこの関数を利用した。

Integer 型の整数の比を計算する場合、小数点以下の値を求めるには除算の余りを 10 倍しそれを再び除数
で割る計算を繰り返す。このとき変数が integer 型だとオーバーフローを生じる可能性がある。そのために
小数点以下の計算では long 型のオペランドを用いる必要がある。この演算を繰り返し、小数点以下 4 桁ま
での商を求めた。演算結果は最終的に電圧値として DA コンバータで出力することになるので、演算結果を
DA コンバータのバイナリコードに変換する処理が必要となる。この演算でも ldiv_t 関数を用いることで、
最終的にプログラム全体では div_t 関数を 1 回、ldiv_t 関数を 5 回実行することになった。

ファンクションジェネレータと DC 電源を用いて、本装置の入力 1 に sin 波を入力 2 に DC 電圧を加え
て動作テストを行った。その時の入出力波形を図 5 に示す。図 (a) は 500Hz の sin 波の入力時、図 (b) は
1KHz の入力時の出力波形で、上段から (1) 出力波形 (2) 入力 2 の波形 (3) 入力 1 の波形である。AD 変換
から DA 変換に至る一連の処理に要する時間を測定すると AD 変換:1μS、AD 変換データの読み込み:1μS、
演算処理:99μS、DA 値の書き込み:0.5μS、DA 変換出力:0.5μS、総計が 102μS となって、サンプリング
速度は約 9.8KSPS であった。

図 5 ビーム電流補正装置のテスト結果

(a) Input: sinusoid 500Hz
(b) Input: sinusoid 1KHz
次に、現状のハードウェアでどこまでサンプリング速度を速くできるかの検討を行った。前述の処理時間の内訳から、演算処理を速くすることが全体の速度向上に最も効果的であることがあらためて確認できる。そこで、32 ビットの除算関数を使わずでできる限り 16 ビットの除算関数で実行するための検討を行った。これには小数点以下の計算において、除数のビット長を 12 ビットに減少させる必要があった。こうして入力信号の分解能を犠牲にすることで、プログラム全体で実行する整数除算の関数は div_t 関数が 5 回、ldiv_t 関数が 1 回となった。変更したプログラムでのテスト結果を図 6 に示す。演算処理に要する時間は 31μS と変更前の約 1/3 となり、サンプリング速度は約 29.4KSPS が得られた。

図 6 演算処理速度を改善したプログラムでのテスト結果

5. おわりに

機器組込み用のワンチップマイコンとして広く利用されている PIC マイコンの上位機種である 16 ビットの dsPIC の開発環境を導入し、その使い勝手や処理能力を検証した。8 ビットの PIC マイコンに比べて参照する技術情報がまだ少なく製作当初は苦労することもあったが、最終的には PIC 同等以上の使いやすさかつ処理速度やメモリ容量など高性能の機能が利用できると感じている。データ長が 16 ビットであるのに対して I/O ポート数が 8 ビットの PIC と同程度である点に少し使い難さを感じるが、これはワンチップマイコンなので仕方のないところである。表面実装タイプのもので端子数の多いものがあるようなので用途によってはそれを利用して行きたい。また、今回は DSP の機能を使わなかったが、これについても今後その能力を試して行きたと考えている。

参考文献
ナノ光計測研究部門の松本Gにおいて、金基板に有機物膜のパターンを作製し、この膜に光を照射し、分子振動の空間分布を観察することにより、分子の種類や量、状態の分布を調べる試みがある。この有機物膜のパターンは図1に示すように3工程で作製される。工程1において、パターン形状加工した鋳型にPDMS溶液を流し込み、固化した後に剥がし取り、鋳型のパターン形状が転写されたPDMSスタンプを作製する。工程2は、このパターン形状を有するスタンプ表面に有機物を塗布し、これを金基板に押付ける。工程3は、押付けたPDMSスタンプを剥離する。この時、凸部分に塗布された有機物のみが基板上に残り、パターン化した有機物膜を作製することができる。松本Gにおいては、図2に示すような長さ3mm×幅50μm×深さ10μmの溝が25μm間隔で40本程度作製されているPDMSスタンプが必要であり、これを作製するための鋳型の製作依頼があった。このようなマイクロ形状は光リソグラフィーなどで作製されるが、これはエッチングにより溝を作製するため、溝を深くすることが困難になる。この溝が浅いと凹凸差が小さくなりパターン化が困難になる。このため溝の深さは重要になる。そこで、NCファイズ盤とφ50μmの超微細エンドミルを使用し、図3に示す20mm×20mm×12mmのアルミ合金の中央(3mm×3mm)に幅50μm×深さ10μmの溝を25μm間隔で40本程度切削をおこなった。この切削加工した溝部分をSEMで観察した像を図4に示す。溝の実測値は幅55μm×深さ13μmであった。この加工誤差は、機械の挙動が主因であると考えている。
マイクロミキサー用マイクロ流路の製作

近藤聖彦

マイクロミキサーは複数の液体をマイクロ流路内で混合する機能を有する装置であり、混合する異種液体間の距離が数十μmと短いことにより混合効率が高い特徴がある。

市販されているマイクロミキサーは金属製であるため、混合する液体とマイクロミキサーの母材が化学反応し、混合液に混入する。これを防止することは困難である。そこで、ガラス製マイクロミキサーの製作を要求されたが、切削によるガラスのマイクロ加工は非常に困難である。また、マイクロ流路の幅、壁の形状などが混合効率にどのような影響を与えるかが判明していない。そこで、はじめに流路形状が混合効率に影響を与えるかどうかを実験することにした。

我々が設計製作したマイクロミキサーは図1に示すように、トップハウジング、混合液流出スリット板、流路ベースの3部品から構成される。この流路ベース上に切削加工を施しマイクロ流路を形成する。この母材にガラスは使用せず、実験用であることならびに切削加工が容易という理由で黄銅を使用した。図2に微小径スクエアエンドミルとNCフライス盤を使用し切削加工を施したマイクロ流路を示す。この流路幅と流路壁の寸法はそれぞれ100μmである。この数値はガラス切削をおこなうことを考慮し、その加工が可能であると考えた最小値である。また、流路深さはエンドミルの刃長を考慮し100μmである。

このマイクロミキサーを使用して実験した結果、従来の混合効率と同程度の効率であることがわかった。この原因は現時点において判明していないが、流路壁の幅が大きいことが主因ではないかと考えている。そこで、切削工具にボールエンドミルを使用し、流路壁の幅を小さくしたマイクロ流路の製作が進められている。
ブルーレイディスクを使用したナノ計測基板の製作

近藤聖彦

1. はじめに

近接場光学顕微鏡を使用したナノ計測研究に使用する基板がある。その研究目的から、この基板は形状15mm × 15mm × t 0.2mm、表面粗さ小さく光学的に透明であること、ならびにその表面に幅数十ナノの溝が多数加工されていることが要求される。このような基板の製作方法は、透明な材料に光や電子ビームを用いた微細溝加工がある。しかし、この方法はコストが高く多大な時間を必要とする。そこで市販されているブルーレイディスク（以後 BD と記述する）のポリカーボネート基板に形成されている溝（数十ナノの幅）を利用することが考案された。これより、低価格の基板製作が可能になる。しかし、市販の BD の厚さは1.2mmであるため、この厚さを 0.2mm にする必要がある。この加工方法は、超精密旋盤の使用、研磨加工などが考えられる。ここでは精密研磨加工法を用いて、このナノ計測基板を製作したので報告する。

2. BD 構造とナノ計測基板の製作方法

図1に示すように、BD はポリカーボネート基板（t1.1 ㎜）表面にトラックピッチ 0.32 μm、深さ 25 〜 35nm の溝が形成されており、その表面に誘電体層、記録層、反射層が積み重ねて施され、さらにこれらの層を保護するため、厚さ 0.1 ㎜のカバー層とハードコートが施された構造となっている。この溝を利用しナノ計測基板を製作することが考えられた。研究目的から、この厚さを 1.2 mm を 0.2 mm にすること、基板側の表面粗さを小さく光学的に透明にすることが要求される。このナノ計測基板の製作は次の 4 工程でおこなった。

(1) 図2 に示すように汎用旋盤を使用して厚さ 1.2mm の BD を厚さ 0.25mm に切削する。
(2) 切削した円盤状の BD (t0.25mm) を 15mm 角にカットし、BD 基板を製作する。
(3) 図3 に示すようにミクロンワックス（日化精工株式会社製）を使用し、BD6 枚を試料固定台に接着する。
(4) 岩石薄片研磨機を改造した平面研磨加工機 [1] にクロス（REFLEX クロス RAM）を貼り付けたアルミ製ラップ定盤を設置し、アルミナ砥粒径 1 μm と 0.3 μm を使用し、荒研磨と仕上げ研磨をおこなう。

3. 表面粗さ評価

上記の各研磨工程について SURFTEST SV-400（株式会社ミツトヨ製）を使用しそれぞれの表面粗さを測定した結果、表1に示すように荒研磨の表面粗さが、12 〜 15nm Ra、仕上げ研磨表面粗さが 5 〜 7nm Ra であった。図4 に荒研磨を施した BD 表面を顕微鏡観察した写真を示す。図5 は仕上げ研磨後、図4 と同じ位置を顕微鏡観察した BD 表面の写真である。この写真より荒研磨時の多数の傷が減少しているのがわかる。
4. まとめ

ナノ計測基板を製作するために、市販のブルーレイディスクを用いて、荒と仕上げの2工程の研磨加工をおこなった。この研磨加工をおこなった基板の表面粗さは5〜7nmRa程度であった。さらに、表面粗さを小さくするには以下のこと考えられる。

1. 試料固定台を圧縮コイルバネなどで支持し、加工圧力を小さくする。
2. 研磨時間を短縮する。
3. よりクリーンな環境で研磨をおこなう。

表1 研磨加工条件と表面粗さ

<table>
<thead>
<tr>
<th>研磨工程</th>
<th>荒研磨</th>
<th>仕上げ研磨</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料材質</td>
<td>ポリカーボネート</td>
<td></td>
</tr>
<tr>
<td>ラップ定盤回転数</td>
<td>50rpm</td>
<td></td>
</tr>
<tr>
<td>クロス種類</td>
<td>REFLEXクロスRAM</td>
<td></td>
</tr>
<tr>
<td>研磨砥粒材質</td>
<td>アルミナ</td>
<td></td>
</tr>
<tr>
<td>研磨砥粒径</td>
<td>1μm 0.3μm</td>
<td></td>
</tr>
<tr>
<td>加工圧力</td>
<td>125g/cm² 50g/cm²</td>
<td></td>
</tr>
<tr>
<td>加工時間</td>
<td>15分 10分</td>
<td></td>
</tr>
<tr>
<td>Ra(nm)</td>
<td>12〜15 5〜7</td>
<td></td>
</tr>
<tr>
<td>Ry(nm)</td>
<td>90〜12 50</td>
<td></td>
</tr>
</tbody>
</table>

参考文献
はじめに
分子科学研究所装置開発室で出庫管理を行うソフトウェア（以下「出庫管理ソフトウェア」）は、パーソナルコンピュータのOSの変遷に伴って大規模な改良を行い、Windowsに移行する際に著者を含む装置開発室職員が在庫品の情報をデータベース化して、ストックルームの端末（PC）からWebブラウザを介して出庫手続きを行う形式[1]を採用し、現在使用されている。
現在の形式はWebページの各種情報入力でよく見られる、HTML（Hypertext Markup Language）のform関連タグであるテキストボックスやラジオボタン、チェックボックスで形成したものである（図1）。これはこれで十分使用に耐えるものではあるが、1つ1つ順を追って出庫部品を選択していく従来の形式を踏襲している。また、複数種類の出庫には一連の出庫手続きを繰り返す必要がある。
一方、Webアプリケーション製作技術はブロードバンド環境の普及もあって、近年飛躍的な進展を見ている。中でもGoogle社のGoogleMapsはマウスホイールの回転で視認ポイントを拡大・縮小させ、マウスのドラッグで視認ポイントを移動させるなど、自由度は非常に高い。このアプリケーションを実現させている技術の根幹にあるJavaScriptでGUIを生かした、分かりやすくすら使いやすい出庫管理ソフトウェアを構成できないかと考え、開発に着手した。

1.なぜ Ajaxを使用するか
1-1. JavaScriptの歴史とAjaxへの進化[2]
JavaScriptは1995年にLiveScriptという名称で登場した、Web技術ではかなり長い歴史を持つスクリプト言語である。当時Webブラウザで大きなシェアを獲得していたNetscape Navigator（以下Netscape）があれば他の動作環境が不要であること、HTMLしかなかったWebページのインターフェースを大きく向上させることが出来ると注目され、近年まで「冬の時代」を過ごして来た。
その1つの要因は、JavaScriptの実装がWebブラウザ毎に異なっていたことである。「閲覧者の環境に依存しない」ことを利用理念とするWebページにおいて、Webブラウザ每の動作の相違は閲覧者（クライアント）にとっても大きな障害となる。
もう1つの要因は、JavaScriptに関連したセキュリティが問題になったことである。JavaScriptの登場から普及までに見られた「Webブラウザのステータスバー表示をリンクに応じて変化させる」ことが、リンクを偽ってクライアントを悪質なWebページに誘導する無限に別ウィンドウを開かせてWebブラウザやOSを強制終了するしかなくなる事態に追い込む「ブラウザ・クラッシャー」などへと悪用されることがあった。JavaScriptを使用することが閲覧者の警戒を呼ぶようになった。
JavaScriptが一般的なWebページでの使用を警戒・敬遠されている間に仕様の標準化（1997年）が進められ、クライアントとサーバ間で必要に応じて通信を行い、JavaScriptで動的にWebページを加工・成形するAjax（AsynchronousJavaScript＋XML）技術へと進化した。
特に2004年から2005年になってGoogle社がGoogleMapsやGmailなどの自社サービスにAjaxを積極的に採用したこと、JavaScriptは再び脚光を浴びることとなった。懸案だったWebブラウザ間の動作の

図1 現在の出庫管理ソフトウェア
技術レポート

相違も、前述の標準化に準拠した Web ブラウザへの実装と、ブラウザ間の相違を解消する各種ライブラリの登場で大幅に改善された。

1-2. JavaScript 使用の利点

クライアント側における動的な Web ページ生成手法は、JavaScript の他に Macromedia 社（現 Adobe 社）が開発した Flash、Microsoft 社が開発した ActiveX などがある。出庫管理ソフトウェアの開発において Flash や ActiveX でなく Ajax すなわち JavaScript を選択したのは、いくつかの理由がある。

第 1 に、簡単且つ安価に開発環境を構成できることである。Flash の開発には Adobe 社の Flash、ActiveX の開発には C++ など別途開発環境を導入する必要がありますが、これらは概して高価で PC に相応のスペックを要求する。対して JavaScript の開発環境としては、最低限 Web ブラウザと Windows 付属の「メモ帳」など汎用テキストエディタがあれば良い。

第 2 に、製作したアプリケーションの実行に際して別途ソフトウェアを必要としないことである。開発環境以外で製作した Web アプリケーションを使用するには、Flash player や ActiveX をクライアント側でインストールする必要がある。対して JavaScript は動作環境が Web ブラウザに実装済みであり、新たにソフトウェアをインストールする必要はない。

1-2. 出庫管理ソフトウェアの開発環境

前述のとおり、JavaScript を用いた Web アプリケーションの開発・実行には特別なソフトウェアをインストールする必要はない。しかし、開発を容易且つ便利にする環境はあった方が良い。

JavaScript にも有償の IDE（統合開発環境）は多数あるが、Web ブラウザの 1 つであり Netscape の流れを受け継ぐ Mozilla Foundation の Firefox に開発用アドオン（拡張機能）を組み込むことで、無償で開発環境を整備・拡張できる。今回は Firefox 最新版（本稿執筆時点でのバージョンは 2.0.0.11）に表 1 のアドオンを導入した。

テキストエディタも有償無償多数あり機能も様々であるが、今回は個人でライセンスキーを得ているサイトー企画の「秀丸エディタ」（http://hide.maruo.co.jp/）を使用した。「秀丸エディタ」は Windows では定番と言われるソフトウェアで、複数のファイルを 1 つのウィンドウで開けるタブ機能をはじめとする豊富な機能を有し、使用者が使いやすいように見た目をカスタマイズできる。また、動作も軽快で使いやすい。

<table>
<thead>
<tr>
<th>名称</th>
<th>機能</th>
<th>入手先 URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firebug</td>
<td>Web ページの HTML や CSS(Cascading Style Sheet) を表示・解析できる。JavaScript ではブレークポイントを設定可能。日本語版あり。</td>
<td>https://addons.mozilla.org/ja/firefox/addon/5165</td>
</tr>
<tr>
<td>Web Developer</td>
<td>Web ページの CSS やイメージファイルの一部／全てを有効／無効に変える。レイアウトの検証に便利。日本語版あり。</td>
<td>http://www.infoaxia.com/tools/webdeveloper/</td>
</tr>
<tr>
<td>IE Tab</td>
<td>Firefox のウィンドウで IE のレンダリング機能を起動させる。Web ページ毎の設定も可能。</td>
<td>https://addons.mozilla.org/ja/firefox/addon/1419</td>
</tr>
<tr>
<td>Opera View</td>
<td>Web ブラウザの 1 つ Opera を開けるようにする。</td>
<td>https://addons.mozilla.org/ja/firefox/addon/1190</td>
</tr>
</tbody>
</table>
2. Ajax を用いた出庫管理ソフトウェア

2-1. メイン画面
出庫手続きを行うメイン画面を図2に示す。左側はエレクトロニクスセクションのストックルームを上から見たものをイラスト風に描写したもので、右側は出庫品を表示するカートである。オンラインショップのショッピングカートを見立てている。

現在稼動中の出庫管理ソフトウェアでは出庫したい品目をリストボックスから順次探していくが、図2に示した開発中の出庫管理ソフトウェアでは、出庫したい品目があると思われる場所をクリックしていく。

出庫品などを見られる場所にマウスカーソルを当てると、図3のようにマウスカーソルにチップ表示が付随する。

メイン画面左側にはイメージマップを採用しており、左側の緑部分（部品棚）は一見全て同じだが、棚の内容に応じてチップ表示が自動的に変化する（図4、図5）。

2-2. 部品の棚と部品の選択
部品のある棚をクリックすると、部品棚を正面から見た図として別のウィンドウが開く（図6）。実際の部品棚に見立てて作成した引き出しにマウスカーソルを当てると色が変わり、クリックすると引き出しが開く（図7）。引き出しを開いたまま別の引き出しを開くことも閉じることも可能である。

また、部品棚は複数同時に開くことが出来る。現行の形式では前に戻って選択しなおさなければならないが、今回の形式ではあたかも実際にエレクトロニクスセクションのストックルームで部品棚の引き出しを開け閉めして部品を探すような感覚で部品を探せる。

更に、部品にマウスカーソルを当てると、その部品の説明と写真がチップ表示される（図8）。部品の形状は覚えているが名称までは、という場合にカタログを調べる感覚で部品を探せる。
2.3 ヘルプ画面

GUI を多用することで自由度は高まるが、反面どこをどう操作すれば良いか分からなくなることもある。今回の開発に際して、使用者の利便性向上のためにヘルプを導入した。

図 9 は出庫管理ソフトウェアに導入したヘルプの初期画面である。図 2 の右下にある PC のイラストをクリックすると表示される。部品棚のウィンドウとは別に表示されるので、出庫手続きを中断しなくて良い。

ヘルプのメニューは Microsoft Office2003 のメニュー画面を模倣している。メニューにマウスカーソルを当てると色が変わり、クリックするとそのメニューに含まれる項目（階層を伴う場合はも含めて）がプルダウン形式で表示される（図 10 − 1, 10 − 2）。項目を選択するとその内容が表示される（図 11）。

このような動的な Web ページは HTML だけでは不可能であり、Ajax を用いることで Flash や ActiveX を使わずとも Web ブラウザのみで実現できる。また、これらは Internet Explorer 並びに Opera でも動作を確認している。

3. まとめと課題

Ajax を用いることで、Flash や ActiveX を使わずに動的な Web ページの構成が可能となった。知識として得ていたが使用する機会がなかった、Web ページのレイアウトを定義するファイル形式である CSS (Cascading Style Sheet) も使用できるようになった。

まだ開発に着手して日が浅く、使用したライブラリの機能を十分使っているとは言えないので、今後解析と動作検証を進めたい。また、たとえば部品をダブルクリックすることで今回は体調を整えるにとどまったカートに品名や価格を表示させるなどカート部分との連携、カートからの出庫品削除などの機能追加、更には現在稼働中のデータベースとの連携を進め、操作性の良い出庫管理ソフトウェアを製作したい。

参考文献
[1] 豊田朋範，“ストックルーム出庫管理システムのデータベース化”，大阪大学総合技術研究会報告集
技術レポート

配向分子の電子運動量分光装置用多次元同時計測回路

内山功一

1. はじめに
東北大学多元物質科学研究所の高橋准教授から「配向分子の電子運動量分光装置のための多次元同時計測回路」の製作を依頼された。この回路は、分子研在籍されていた2005年当時の依頼で製作した「電子運動量分光装置の2π検出器用測定回路」を改良した後継機である。電子運動量分光装置とは、エネルギーと運動量が既知の電子を標的分子に当てた高速電子衝撃イオン化で生成する非弾性散乱電子と電離電子の中で散乱角が45度でエネルギーが相等しい二電子および、解離イオンを同時計測することで電子運動量分布を得るための装置である。

今回製作した回路は、二電子を検出するMCPと3本のディレイラインからなる位置検出器および、解離イオンを検出する7個の追い返し電場型イオン検出器の信号を同時計測するための回路である。各ディレイラインの両端から出力される6本の信号のどれか一つに、ライン長から算出される時間（400nsec）以内に2つのパルス（以下ツインパルス）が発生した場合それを同時現象と判断し、その時のセッション情報（ディレイライン、MCP、前段に設けられたイオン検出器の各信号）をTDC（Time-to-Digital Converter）で取り込む。TDCでは各ディレイラインとイオン検出器から出力されるパルスとの時間差を測定する。検出器の分解能を上げるためにはTDCに高い時間分解能が要求されるため、同時計測回路は高速論理素子であるECLを用いて製作を行った。

前回製作した回路のブロック図を図1に示す。ディレイラインからの各信号を3本に分け、その内の2本を同時計測のためのゲート判定に用いる。ゲート判定の結果、ツインパルスが発生した場合、TDCにcommon start信号が入力されセッション情報が取り込みを開始する。残った1本の信号は、セッション情報としてTDCで取り込む事ができるようにツインパルス最大時間（400nsec）遅延させる。400nsecの信号遅延には、最大100nsec遅延可能なディレイラインIC（Data Delay Devices社DDU12H-100）をそれぞれの信号線に対して4素子使用している。この回路をテストした時の問題点として、ツインパルスの間隔をディレイラインICの遅延時間である100nsec付近に設定した時に、稀にノイズのようなパルスがツインパルスの直後に観測された。この現象はディレイラインICでの問題で特定でき、また実験において致命的な問題であったため信号を遅延させない方式の改良後継機を製作することになった。

2. 製作した回路について
装置で使用しているTDCはタイムスタンプ型であり、入力パルスの時間情報はカウンター値として常時計測されている。そしてcommon startに入力したトリガーをcommon stopとして使うことで、それ以前

図1 2005年版計測回路ブロック図
入力されていたパルスの時間情報がカウンター値を計算することで求めることができる。この方式によりセッション情報分の遅延回路は必要がなくなり、ゲート判定で生成したトリガーサインのみを遅延させればよくなった。このことで回路が大幅に簡素化されることになった。

今回製作した回路のブロック図を図2に示す。図の点線で囲んだ部分が今回製作したモジュール部分である。前回製作した回路は1幅が1台、2幅が2台、合わせて3台のNIMモジュールで製作された。今回製作した回路は、ディレイ回路と多くのゲート回路が不要になったため2幅のNIMモジュール1台に収まり、非常にコンパクトになった。

今回製作した回路のブロック図を図2に示す。図の点線で囲んだ部分が今回製作したモジュール部分である。前回製作した回路は1幅が1台、2幅が2台、合わせて3台のNIMモジュールで製作された。今回製作した回路は、ディレイ回路と多くのゲート回路が必要になったため2幅のNIMモジュール1台に収まり、非常にコンパクトになった。
製作した基板及びモジュール外観を写真 1-3 に示す。前述したようにプリント基板は 2 幅の NIM モジュール内に 2 枚収納されている。プリントパターンは、回路上の時間差を最小に抑えるため各伝送経路が等しくなるように配置している。フロントパネルにはイオン検出器からの入力信号を取り込むゲート時間の調整用ボリュームと TTL モニタ端子、そして 3 つの ECL 入出力用リボンコンネクタ端子が設置されている。パネル向かって左側がゲート判定用ディレイライン入力、右側上が TDC への出力、下側がディレイライン及びイオン検出器の入力コネクタである。ECL は消費電力が大きく発熱も大きくため、対策としてリアパネルに 40mm 角の排気用ファンを 2 台設置している。

3. 最後に
テスト用のダミー信号源を用意して回路の動作チェックを行った結果を報告する。
・ディレイライン信号のパルス幅が狭いほど測定範囲が広がるため、測定可能な最小パルス幅を調べた。パルス幅 8-10nsec のダミー信号を同時計測回路に入力し TDC へ出力した結果、測定には全く支障がなかった。
・上記と同じ理由でツインパルスの間隔が狭い場合でも計測可能かどうか調べた。ダミー信号のパルス間隔 10nsec で入力した結果、この場合も測定に支障はなかった。
・短時間で実験データを多くとるためには、高い繰返し周期で動作することが望ましい。ダミー信号を用いた繰返し測定のテストにて 10KHz の入力は 100% の測定が可能であった。50KHz の場合は約 20% の取りこぼしが発生するが、これは TDC の性能によるものと考えており、今回製作したモジュールは十分な性能を持っていると考える。
写真1 ゲート出力回路基板

写真2 ゲート判定回路基板

写真3 左：フロントパネル、右：リアパネル
1. はじめに
平成19年5月22日から24日にかけて東京大学生産技術研究所試作工場で創成放電加工機を用いたテスト加工を行ってきたので報告する。

2. 目的
分子科学の研究にもたくさん利用されているスパッタ、エッチングに必要なメタルマスクを放電加工により必要な精度で製作可能であるかを検討するため以下の加工テストを行った。
今回のテスト加工の概略を図1に示す。
东京大学生産技術研究所試作工場が所有する創成放電加工機(三菱電機:VS011;図2)を用いて、ステンレスSUS304厚さ0.5mmの平板上に図1に示すような長方形の穴(以下スリットと呼ぶ、0.5mm×0.1mm、深さ0.03mm)を10箇所作製し、スリット間距離が0.03mm±0.003mm以内に加工できるかを確認する。

3. 放電加工と微細加工
近年マイクロマシンや医療用部品などの製作手段として様々な微細加工技術が提案されているが、ミクロンオーダーの加工としては、スパッタ、エッチングなど、半導体製造技術を用いた素材形成が提案されている。しかし、それらの加工方法は、複雑な3次元形状の形成が困難とされている。このようなミクロンオーダーの加工に対して、最近では切削による微細加工の試みが装置開発室でも行われているが、微小工具の剛性が低いため、高精度・高アスペクト比（アスペクト比：穴を開けるときの直径とその深さ方向の比率）の加工は困難なのが実情である。
一方、放電加工は元々被加工物に対して加工力を加えにくい非接触加工であることから、工具電極のたわみの影響が無視でき、微細放電加工に適していると考えられる。
しかし、通常総形電極を用いた放電加工（図3）では、電極製作が不可欠であるため、微細形状の電極製作が障害となっていた。このような問題を解決する目的で、単純形状の電極を用いた創成加工が提案された。

4. 創成加工の原理
通常の放電加工は、総形電極形状を転写することで
必要な形状を製作するので、電極の設計及び製作が不可欠であった。また、電極の精度が加工製品の精度を決定するため、電極自体を高精度に製作する必要があった。創成放電加工は、主としてパイプ状あるいは丸棒状の電極を回転させた状態で、横方向の加工を行うことで、必要な輪郭形状加工を行う。

図4に創成放電加工の原理を示す。

5. 微細工具
微細加工を実際に行う場合には創成放電加工であっても微細な工具がまず必要になる。このような微細工具を製作するにはやはり微細加工の技術が必要になる。特に微細工具は、細い棒状をしているので、ちょっとした力で変形してしまうし、高い精度を維持して小径まで加工することが難しい。そこで、微小エネルギー放電による放電加工を用いて微細電極を製作する方法が考え出された。今回はその手法としてWEDG(ワイヤ放電研削法)を用いた。

6. WEDG
WEDGとは、Wire Electro-discharge Grindingの略で、移動する金属ワイヤ（黄銅、タンクステンなど）を電極として用いる放電研削手法の一つであり、細穴の放電加工を行うための微細電極製作に用いられている。その概要を図5に示す。今回の場合、直径0.2mmの真鍮ワイヤを、ワイヤガイドに沿ってゆっくり移動させ、ワイヤガイド近傍に被加工物の超硬合金（直径1mm）を回転させながら近づけ、放電加工を行う。加工現象として放電による加熱、溶融を利用して除去加工を行うので、加工時にかかる力が小さい。しかも、電極であるワイヤが移動しながら加工するため電極面は常に新しいワイヤが供給され、電極消耗の影響が少ない加工が可能になる。実際に製作した電極のSEM写真を図6、7に示す。三菱機電VS011の場合、作製可能な電極の最小直径が0.02mm、最大電極長さは、直径の20倍である。今回のテストでは、直径0.05mm、長さ0.5mmの設定で電極を作製したが、実際にできたものを測定したところ直径0.047mm、長さ0.5mmであった。

7. 加工手順
図8に示すように、一つめのスリット加工箇所でZ軸マイナス方向に0.001mm下げ（図8-(1)）、1スリットの輪郭加工を行う（図8-(2)）。次に、隣のスリット加工箇所へ移動後（図8-(3)）、先程と同じように、スリットの輪郭加工を行う。10箇所の加工を終了後、一つめのスリット加工箇所に移動する。今度は、Z軸マイナス方向をさらに0.001mm下げ同様の加工を計60回行う。これにより理論上深さ0.06mmの加工を行った事になるが、これは電極消耗を見込んだためである。
8. 加工結果
実際に加工した SUS304 を図 9 に示し、各寸法の測定結果を図 10 に示す。
加工の結果、スリット幅約 0.08mm、スリット間隔 0.05mm、スリット深さ 0.027mm という結果を得た。今回スリット間隔の寸法公差に関しては、加工条件の最適化が行われていない上に、現段階ではスリット端面の溶融が激しく、加工側面の特定が難しいため、考慮に入れなかった。

9. まとめ
今回のような微細加工の場合、適切な加工条件表はほとんど無い。このようなときの加工条件は、テストを繰り返しながらパラメータを変更し、最適な加工条件を見つける以外ない。したがってこのテストは、加工条件の基礎となるパラメータの確認が主な内容になった。テストで使用した加工条件は、電極径の異なる場合のメーカー推奨値をベースにしている。
今回のテスト結果から、設計値との差がでた原因として以下の二点が考えられる。まず一つめは、使用する電極が設計値よりも 0.002 〜 0.003mm 小さかったことである。そして二つめに加工条件のある一つである「放電ギャップ設定」0.007mm が適切でなかった点である。テスト結果から考えて、これらの数値の修正によって、SUS304 を母材とする 0.03mm 間隔のスリット加工は十分可能であると考えられる。
今後の展開としては、この結果を受けて変更した加工条件での加工テストを行う予定である。
なお、今回のテストでは、創成加工機の機能の一つである電極消耗による自動補正機能を使用していない。これは電極があまりにも小さすぎて適切に作動せず、電極が破損してしまうのを回避するためであることを付加加えておく。
薄型 XY ステージの製作

水谷伸雄

はじめに :
光分子科学第一岡本グループでは、近接場顕微鏡の開発が進められ、いくつもの特筆すべき業績を積み重ねている。これら近接場顕微鏡の開発にあたり装置開発室としてもその特性の部品製作はもとより、機構部分の設計製作に関わってきた。
今回は設計製作した薄型 XY ステージもこの近接場顕微鏡の機構部分として観察時のサンプル位置決めを容易にする目的で井村氏より依頼を受けた。

組付け条件 :
井村氏より提示された XY ステージの条件は、既存の近接場顕微鏡の構成をそのまま利用し、追加加工はしない事。支柱や組立ねじの位置変更もせず、取付けは 150 ミリ × 240 ミリのベース板と 100 ミリ × 100 ミリピエゾステージとの間に、中心に直径 φ50 ミリ以上の開口部を設ける事。本体厚さは出来るだけ薄くする事。XY ステージの移動量を ±3 ミリとした。市販のマイクロメーターヘッドが支給された。

設計 :
単純に直径 9 ミリのマイクロメーターヘッドを XY で二段使用すれば、ステージの厚さは 18 ミリ以上必要となるが、マイクロメーターヘッドの取付け位置をベース板の外側にし、ばねの配置もスライド部分の外側にする事等で、XY ステージ本体部分の厚さを 6 ミリに設計した。マイクロメーターヘッドや、ねじ突起部を含む全厚は 16 ミリ、外形寸法、縦 178 ミリ × 横 173 ミリ)スライド機械は台形の断面形状を持つアリ溝方式とした。材質は摺動部やねじ部の強度を考慮して真鍮を使用した。耐荷重は 2kg としてばね等の選定をした。

製作 :
部品加工、組立てのすべてを装置開発室で行った。材料の殆どは板材を使用したが板の表面がそのまま摺動面となる部分もあるので、傷や反り等の無い良好な平面状態の素材を使用し、これら主要部品は専用の治具と共に加工された。製作した XY ステージの写真を以下に示す。本ステージは近接場顕微鏡に組込まれ、現在 2 台目の製作依頼を受けている。

図 1 薄型 XY ステージ
幅 173 ミリ、奥行 178 ミリ、全厚 16 ミリ
開口部 □ 50 ミリ × 50 ミリ

図 2 薄型 XY ステージ
本体部分 (100 ミリ × 100 ミリ) の厚さ 6 ミリ
はじめに：
この依頼は、名古屋大学の田原教授より相談を受け試作した。
田原教授は、長年にわたり、衛星搭載用X線望遠鏡の開発を進めている。X線望遠鏡の光学系は、可視光を用いた一般的な光学系のようにガラスレンズの屈折を利用して集光させる事は出来ない。また、ミラーの反射を利用してX線のほとんどはミラーを透過してしまう。しかし、X線の光軸とミラーとの反射角をごく僅かな角度に設定することでX線の反射を利用する事ができ、この反射面を円筒状にする事でX線を集光させる事が出来る。X線望遠鏡は、この原理に基づき、ごく僅かな角度を持つテーパー円筒を同心円上に配置する事でX線を集光させるレンズの役目をさせる事でX線を集光させる事が出来る。テーパー円筒の製作は、長年にわたり名古屋大学をはじめ多くの人々や企業が関与し、いろいろな加工法が試されている。しかしながら切削加工による一体型の製作は困難とされてきた。
現在稼働中のX線望遠鏡は、アルミフォイル板を扇状に切り出した物を円筒状に熱成形し専用フレームに組み込む事で形状を保持しているが、フレーム構造がレンズ開口部の集光効率を悪くしている。そこで、集光効率の向上と軽量化を目的に、再び切削加工による一体型の製作が求められた。
形状、材質：
図1に、今回試作したテーパー円筒の形状を示す。全長150ミリ、最大内径φ153.952ミリ、テーパー角度1度30分33秒と4度36分32秒のテーパー角度を持ち内面全面にわたり滑らかな反射面と厚さ0.2ミリ以下の均一な肉厚が求められた。反射面の表面荒さについては数値的な目標値も示されたが今回は機械加工が可能かどうか目的であったため面荒さについては深く追求していない。材質はアルミ合金とだけ指定されたので、強度、加工経験、入手のしやすさ等からA5056押出丸管（外形φ160ミリ×肉厚20ミリ）を使用した。

図1：薄肉テーパー円筒
加工手順:
はじめに二段一体型の製作は行わず、それぞれのテーパー部で分離した物を製作し、薄肉テーパー円筒の切削加工が可能か検証した。図2に分離し製作したテーパー円筒の写真を示す。

・内面加工
仕上げ全長は75ミリだが、チャックのつかみ代、突っ切り代等に余裕を持たせ長さ120ミリに素材のパイプを切出し内面の切削加工を行った。（図3）刃物台のテーパー角度の固定は、計算により求めた値を刃物台に取り付けたダイヤルゲージで読取る事で角度誤差をなくした。（図4）切削は、軽質金属用の超硬チップを使用したが、バイトホルダーがあまり太くなかったためビビリが生じ、切削だけでは滑らかな面を得る事は出来なかった。そこで切削の後、耐水ペーパー#320, #600, #1000を用いて内面を仕上げた。

・母型の製作
テーパー円筒の肉厚は0.2ミリと薄くなるため、そのままでは外周を切削する事は出来ない。そこで、内径に合う母型を作り（図5）この型に内面を仕上げた素材をはめ込み回転センターで押付けながら外周切削を行った。なお、母型の切削面は耐水ペーパー#600, #1000で磨いた後、スビンドル油を塗布する事でテーパーのはめ合い面に傷が付かないようにした。

図2：分離して製作したテーパー円筒
図3：内面加工の様子
図4：ダイヤルゲージによるテーパー角度設定
図5：母型の製作
・外周切削

はめ合わせるテーパー部は仕上り寸法（75 ミリ）よりも 15 ミリ程長くして、内側テーパーを切削する際にチャックのつかみ代としていた部分ぎりぎりまで母型の先端がはまり込むようにした。これは、つかみ代としていた部分付近の肉厚を厚く残すことで、テーパー部の肉厚が薄くなっても回転センターで材料を押付ける力が母型に確実に伝わるためである。

（図 6）また母型にはめ込まれたままの材料は、正確に肉厚を測定する事は難しい。そこで、母型を仕上げた時の刃先位置とテーパー円筒外周を切削する時の刃先位置の差（今回は、0.175 ミリに設定）をテーパー円筒の肉厚とした。

・突っ切り

外径の仕上がったテーパー円筒は、所定の外径寸法の位置で突っ切る事で完成となる。しかし、回転センターで母型にきつく押込まれたテーパー円筒を突っ切り後に母型から取外すのは難しい。そこで、突っ切る前に一旦ソフトハンマーを使って母型から外し、再度母型に軽くはめ込んで突っ切りをした。（図 7）

・取外し、仕上

突っ切りにより所定の寸法に仕上げられたテーパー円筒は表面の油分をアルコール洗浄し両手で包込むようにして手のひらの摩擦によって母型から外される。突っ切り時に生じた僅かなバリは、耐水ペーパーで修正した。（図 8）この方法で、角度の違う 2 種類のテーパー円筒を試作した。また、肉厚 0.05 ミリのテーパー円筒を試みたところ、外周切削までは何の問題もなく加工出来たが、突っ切りの時点で端面にしわが生じ母型から外すと共に原形をとどめる事は無かった。（図 9）
二段一体型の製作

二段一体型の製作は、分離型と同様だが、分離型は、長めに作っておいたテーパー円筒を突っ切り時に所定の直径部分で切断するため内面の切削段階では、寸法精度にさほど注意する必要はなかった。しかし二段一体型の場合、テーパー接続部の内径（φ150ミリ）を基準として二つのテーパー内径を仕上げておく必要がある。母型についても分離型の場合テーパー角度さえ合わせておけば直径の精度は問われない。しかし二段一体型の場合、二つのテーパー角度と同時に内径も正確に合わせる必要がある。図10に示す二段一体型の試作品も一方のテーパー部が母型との密着不良により部分的にしわが生じている。

試作を終えて：

今まで製作困難と思われていた薄肉テーパー円筒を汎用旋盤を用いて切削加工する事が出来た。しかしながら、今回製作した物は、X線望遠鏡に使用する数多ミラーのほんの一枚に過ぎず、さらに大口径のミラーが加工可能かどうかは問題もある。また、加工時間や材料代もかかる為この加工法がそのままX線望遠鏡の製作方法として採用されるかは分からないが、X線望遠鏡用ミラー製作の一手段として技術の確認が出来た。この経験は、今後他の装置製作においても重要な技術として役立つであろう。
装置開発室の業務に所内からの依頼による装置製作がある。機械、電子回路、ガラスの各グループが2006年1月から12月までに受けた工作依頼のリストを以下に掲載する。リストは工作依頼書に記入された品名と管理のための伝票番号のみの記載とした。

このリストにあるすべての依頼製作品には記録写真があり保管されている。本レポートにすべての物を掲載できないが、抜粋し【写真】と付記された依頼品名について後のページに掲載した。また、17年度より開始した「施設利用」による依頼工作には伝票番号に＊印を付けている。

機械グループ（249件）

<table>
<thead>
<tr>
<th>伝票番号</th>
<th>品名</th>
</tr>
</thead>
<tbody>
<tr>
<td>07A01</td>
<td>高調波セル【写真】</td>
</tr>
<tr>
<td>07A02</td>
<td>取付ベース板</td>
</tr>
<tr>
<td>07A03</td>
<td>ハイオセンサー改良型追加工</td>
</tr>
<tr>
<td>07A04</td>
<td>蒸着ステージ修理</td>
</tr>
<tr>
<td>07A05</td>
<td>ステンレススペーサー</td>
</tr>
<tr>
<td>07A06</td>
<td>ルーフィッシング線手</td>
</tr>
<tr>
<td>07A07</td>
<td>高出力マイクロチッププレーサ径体の電気配線</td>
</tr>
<tr>
<td>07A08</td>
<td>熱レンズアライメント用治具</td>
</tr>
<tr>
<td>07A09</td>
<td>イオンチャンネルバイオセンサーチャンバー・型</td>
</tr>
<tr>
<td>07A10</td>
<td>流路なしフタ</td>
</tr>
<tr>
<td>07A11</td>
<td>EXAFS セル</td>
</tr>
<tr>
<td>07A12</td>
<td>ベース加工</td>
</tr>
<tr>
<td>07A13</td>
<td>半結晶マウント用微動装置用部品</td>
</tr>
<tr>
<td>07A14</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A15</td>
<td>デフレクター</td>
</tr>
<tr>
<td>07A16</td>
<td>レール</td>
</tr>
<tr>
<td>07A17</td>
<td>レール R</td>
</tr>
<tr>
<td>07A18</td>
<td>高感度光測定分子線装置【写真】</td>
</tr>
<tr>
<td>07A19</td>
<td>ミラー取付部品</td>
</tr>
<tr>
<td>07A20</td>
<td>マイクロ流路型</td>
</tr>
<tr>
<td>07A21</td>
<td>光ファイバーホルダー支持台</td>
</tr>
<tr>
<td>07A22</td>
<td>分子線ノズル Nb</td>
</tr>
<tr>
<td>07A23</td>
<td>低温試料槽</td>
</tr>
<tr>
<td>07A24</td>
<td>膨張計</td>
</tr>
<tr>
<td>07B01</td>
<td>ファイバーホルダアタッチメント他</td>
</tr>
<tr>
<td>07B02</td>
<td>C60 昇華用オープン</td>
</tr>
<tr>
<td>07B03</td>
<td>シールフランジ</td>
</tr>
<tr>
<td>07B04</td>
<td>ICF203 フランジ追加工</td>
</tr>
<tr>
<td>07B05</td>
<td>レンズスペーサー（Qスイッチレーザー用）</td>
</tr>
<tr>
<td>07B06</td>
<td>レーザー用スペーサー</td>
</tr>
<tr>
<td>07B07</td>
<td>MCP 支え</td>
</tr>
<tr>
<td>07B08</td>
<td>ステンレス架台溶接</td>
</tr>
<tr>
<td>07B09</td>
<td>ラディエーションシールドの穴の拡大</td>
</tr>
<tr>
<td>07B10</td>
<td>ガスケット</td>
</tr>
<tr>
<td>07B11</td>
<td>台板上げ用スペーサー、支柱</td>
</tr>
<tr>
<td>07B12</td>
<td>ヒーター、熱対応ターミナル</td>
</tr>
<tr>
<td>07C01</td>
<td>最終調整記録</td>
</tr>
<tr>
<td>07C02</td>
<td>小型レーザーモジュールの改造</td>
</tr>
<tr>
<td>07C03</td>
<td>リペア</td>
</tr>
<tr>
<td>07C04</td>
<td>接合装置</td>
</tr>
<tr>
<td>07C05</td>
<td>イオンチャンネルバイオセンサーテーブル</td>
</tr>
<tr>
<td>07C06</td>
<td>SES100 用支柱ブロック</td>
</tr>
<tr>
<td>07C07</td>
<td>内側電気シールド底板用フタ</td>
</tr>
<tr>
<td>07C08</td>
<td>压力センサー接続</td>
</tr>
<tr>
<td>07C09</td>
<td>プレート</td>
</tr>
<tr>
<td>07C10</td>
<td>ビームセレクター用ミラーステージの改良</td>
</tr>
<tr>
<td>07C11</td>
<td>分子研究会記録</td>
</tr>
<tr>
<td>07C12</td>
<td>低温 IR セル</td>
</tr>
<tr>
<td>07C13</td>
<td>ガラスセル用ヤグラ</td>
</tr>
<tr>
<td>07C14</td>
<td>BLIA 架台</td>
</tr>
<tr>
<td>07C15</td>
<td>ライトガイドカバー</td>
</tr>
<tr>
<td>07C16</td>
<td>etch-chamber</td>
</tr>
<tr>
<td>07C17</td>
<td>流路カッティングモールド</td>
</tr>
<tr>
<td>07C18</td>
<td>フランジ追加工</td>
</tr>
<tr>
<td>07C19</td>
<td>reducing nipple 用支柱・支持ブロック</td>
</tr>
<tr>
<td>07C20</td>
<td>ホルダーの加工</td>
</tr>
<tr>
<td>07C21</td>
<td>電気シールド+1/16 管</td>
</tr>
<tr>
<td>07C22</td>
<td>試料移送機構</td>
</tr>
<tr>
<td>07C23</td>
<td>フランジ外げる</td>
</tr>
<tr>
<td>07D01</td>
<td>モノクロメータ</td>
</tr>
<tr>
<td>07D02</td>
<td>SPM サンプルホルダー</td>
</tr>
<tr>
<td>07D03</td>
<td>電極加工</td>
</tr>
<tr>
<td>07D04</td>
<td>膨圧計薄設台、支柱</td>
</tr>
<tr>
<td>07D05</td>
<td>セル固定ベース</td>
</tr>
<tr>
<td>07D06</td>
<td>オリフィス</td>
</tr>
<tr>
<td>07D07</td>
<td>結晶ホルダー</td>
</tr>
<tr>
<td>07D08</td>
<td>光電子チャンバー用支柱</td>
</tr>
<tr>
<td>07D09</td>
<td>試料支持板</td>
</tr>
<tr>
<td>07D10</td>
<td>ハイオセンサーフタ部</td>
</tr>
<tr>
<td>07D11</td>
<td>バラエスペーサーパタヘッド</td>
</tr>
<tr>
<td>07D12</td>
<td>試料移送機構【写真】</td>
</tr>
<tr>
<td>07D13</td>
<td>ステージアダプター他</td>
</tr>
<tr>
<td>07D14</td>
<td>O-ring 面のみがき（バルブ修理）</td>
</tr>
<tr>
<td>07D15</td>
<td>ミラーホルダー加工</td>
</tr>
<tr>
<td>07D16</td>
<td>マイクロメッシュの結晶ホルダー追加工</td>
</tr>
<tr>
<td>07D17</td>
<td>アルミブロック</td>
</tr>
<tr>
<td>07D18</td>
<td>マイクロミキサー【写真】</td>
</tr>
<tr>
<td>07D19</td>
<td>結晶ホルダー</td>
</tr>
<tr>
<td>07D20</td>
<td>板加工</td>
</tr>
<tr>
<td>07D21</td>
<td>隔壁溶接【写真】</td>
</tr>
<tr>
<td>07E01</td>
<td>マイクロ流路位置合わせシステム</td>
</tr>
<tr>
<td>07E02</td>
<td>PDMS 鍛型</td>
</tr>
<tr>
<td>07E03</td>
<td>OPO ケース部品</td>
</tr>
<tr>
<td>07E04</td>
<td>AFM ホルダー部品</td>
</tr>
<tr>
<td>07E05</td>
<td>結晶ホルダー</td>
</tr>
<tr>
<td>07E06</td>
<td>IR 用スリット機構</td>
</tr>
<tr>
<td>07E07</td>
<td>ブラックファーシステム試作【写真】</td>
</tr>
<tr>
<td>07E08</td>
<td>くし型サンプルホルダー</td>
</tr>
<tr>
<td>07E09</td>
<td>透過試料支持板</td>
</tr>
<tr>
<td>07E10</td>
<td>スキャンニングミラーホルダー台座</td>
</tr>
<tr>
<td>07E11</td>
<td>液体窒素トラップ取付用交換フランジ</td>
</tr>
<tr>
<td>07E12</td>
<td>DAC ホルダー</td>
</tr>
<tr>
<td>07E13</td>
<td>低温試料槽</td>
</tr>
<tr>
<td>07E14</td>
<td>VG250 チャンバー加工</td>
</tr>
<tr>
<td>07E15</td>
<td>反射率測定用試料支持台</td>
</tr>
<tr>
<td>07E16</td>
<td>固定ボルト</td>
</tr>
<tr>
<td>07E17</td>
<td>阻止電場型電子検出器 [写真]</td>
</tr>
<tr>
<td>07E18</td>
<td>AL フタ</td>
</tr>
<tr>
<td>07E19</td>
<td>HHG セルベース他</td>
</tr>
<tr>
<td>07E20</td>
<td>リング</td>
</tr>
<tr>
<td>07E21</td>
<td>イオン化室、ICF70sample 導入用フランジ</td>
</tr>
<tr>
<td>07E22</td>
<td>FT/IR 用サンプル研磨治具</td>
</tr>
<tr>
<td>07E23</td>
<td>MCP 固定座追加工</td>
</tr>
<tr>
<td>07E24</td>
<td>リング</td>
</tr>
<tr>
<td>07E25</td>
<td>OPO ケース関連部品</td>
</tr>
<tr>
<td>07E26</td>
<td>押き型製作</td>
</tr>
<tr>
<td>07F01</td>
<td>バルクヘッド用 L 字板</td>
</tr>
<tr>
<td>07F02</td>
<td>OPO ケース修正</td>
</tr>
<tr>
<td>07F03</td>
<td>HHG セル固定プレート</td>
</tr>
<tr>
<td>07F04</td>
<td>ファイバー治具</td>
</tr>
<tr>
<td>07F05</td>
<td>BL7U トランスファーシステム追加部品</td>
</tr>
<tr>
<td>07F06</td>
<td>ICF70 の溶接及び穴開け</td>
</tr>
<tr>
<td>07F07</td>
<td>円盤</td>
</tr>
<tr>
<td>07F08</td>
<td>試料ホルダー追加工、修正</td>
</tr>
<tr>
<td>07F09</td>
<td>アクリル部品</td>
</tr>
<tr>
<td>07F10</td>
<td>Q スイッチレーザーモジュールの製作</td>
</tr>
<tr>
<td>07F11</td>
<td>ビコリステージアタッチメント他 3 点</td>
</tr>
<tr>
<td>07F12</td>
<td>Z 軸ステージ</td>
</tr>
<tr>
<td>07F13</td>
<td>遠赤外用試料支持台</td>
</tr>
<tr>
<td>07F14</td>
<td>架台加工</td>
</tr>
<tr>
<td>07F15</td>
<td>PDMS 製スプレーラー</td>
</tr>
<tr>
<td>07F16</td>
<td>サンプルカバー</td>
</tr>
<tr>
<td>07F17</td>
<td>PDMS の穴開け工具</td>
</tr>
<tr>
<td>07F18</td>
<td>ベイオチップ位置決めステージ [写真]</td>
</tr>
<tr>
<td>07F19</td>
<td>スタックビエブステージ</td>
</tr>
<tr>
<td>07F20</td>
<td>延長管の銅管</td>
</tr>
<tr>
<td>07F21</td>
<td>ラディエーションシールドスペーサ</td>
</tr>
<tr>
<td>07F22</td>
<td>ハイオチャンバー追加加工</td>
</tr>
<tr>
<td>07F23</td>
<td>ガスケット</td>
</tr>
<tr>
<td>07F24</td>
<td>有機単結晶の薄膜加工</td>
</tr>
<tr>
<td>07F25</td>
<td>フランジブラケット追加工</td>
</tr>
<tr>
<td>07F26</td>
<td>フィルターホルダー</td>
</tr>
<tr>
<td>07F27</td>
<td>パイオセンサー冷却温度調節システム [写真]</td>
</tr>
<tr>
<td>07F28</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07F29</td>
<td>ステージ</td>
</tr>
<tr>
<td>07F30</td>
<td>AFM サンプルホルダー</td>
</tr>
<tr>
<td>07F31</td>
<td>PDMS サンプルホルダー</td>
</tr>
<tr>
<td>07F32</td>
<td>磁気シールド治具</td>
</tr>
<tr>
<td>07F33</td>
<td>斜め射出光器の改良</td>
</tr>
<tr>
<td>07G01</td>
<td>フィルターホルダー</td>
</tr>
<tr>
<td>07G02</td>
<td>バイオセンサー冷却温度調節システム [写真]</td>
</tr>
<tr>
<td>07G03</td>
<td>ステージ</td>
</tr>
<tr>
<td>07G04</td>
<td>AFM サンプルホルダー</td>
</tr>
<tr>
<td>07G05</td>
<td>STM サンプルホルダー</td>
</tr>
<tr>
<td>07G06</td>
<td>PDMS 製スプレーラー</td>
</tr>
<tr>
<td>07G07</td>
<td>PDMS 製スプレーラー</td>
</tr>
<tr>
<td>07G08</td>
<td>板</td>
</tr>
<tr>
<td>07G09</td>
<td>ダイフロン培養チャバー</td>
</tr>
<tr>
<td>07G10</td>
<td>高調波セル用ファイバー加工 [写真]</td>
</tr>
<tr>
<td>07G11</td>
<td>ASANO 式 PDMS 成形型</td>
</tr>
<tr>
<td>07G12</td>
<td>アタッチメント他 4 点</td>
</tr>
<tr>
<td>07G13</td>
<td>アルミリング</td>
</tr>
<tr>
<td>07G14</td>
<td>PS 給電ロッド</td>
</tr>
<tr>
<td>07G15</td>
<td>PDMS 製スプレーラー</td>
</tr>
<tr>
<td>07G16</td>
<td>パイオセンサー冷却温度調節システム [写真]</td>
</tr>
<tr>
<td>07G17</td>
<td>フィルターホルダー</td>
</tr>
<tr>
<td>07G18</td>
<td>柱状加工</td>
</tr>
<tr>
<td>07G19</td>
<td>レーザー用スプレーラー</td>
</tr>
<tr>
<td>07G20</td>
<td>AFM サンプルホルダー</td>
</tr>
<tr>
<td>07G21</td>
<td>クラスター装着用 TOF-MASS メッシュ電極 A</td>
</tr>
<tr>
<td>07G22</td>
<td>152 フランジ加工、メッシュ付円盤、支柱</td>
</tr>
<tr>
<td>07G23</td>
<td>ヘリウム容器トップフランジ</td>
</tr>
<tr>
<td>07G24</td>
<td>ダイナミクスシート</td>
</tr>
<tr>
<td>07G25</td>
<td>ブレス台座</td>
</tr>
<tr>
<td>07G26</td>
<td>調波フィトフィジックストップフランジ修正</td>
</tr>
<tr>
<td>07G27</td>
<td>ガス導入パイプ</td>
</tr>
<tr>
<td>07G28</td>
<td>フラップレディスカ加工</td>
</tr>
<tr>
<td>07G29</td>
<td>フラップレディスカ研磨加工</td>
</tr>
<tr>
<td>07H01</td>
<td>タイフロン製保冷用チップアダプタ・アルミ製ステージ</td>
</tr>
<tr>
<td>07H02</td>
<td>ハイオチャンバー部品・アクアルカバー修理</td>
</tr>
<tr>
<td>07H03</td>
<td>星型プロック</td>
</tr>
<tr>
<td>07H04</td>
<td>磁石ハウジング</td>
</tr>
<tr>
<td>07H05</td>
<td>コイルスタンド・ベース</td>
</tr>
<tr>
<td>07H06</td>
<td>C60 用オプション</td>
</tr>
<tr>
<td>07H07</td>
<td>対物レンズアダプタ</td>
</tr>
<tr>
<td>07H08</td>
<td>ICF70 フランジ (ゴムウェア溶接)</td>
</tr>
<tr>
<td>07H09</td>
<td>イオンチャンネルセンサー素子 (1)</td>
</tr>
<tr>
<td>07H10</td>
<td>試料移送用ホルダー</td>
</tr>
<tr>
<td>07H11</td>
<td>スキマー [写真]</td>
</tr>
<tr>
<td>07H12</td>
<td>ファイバー袋支持棒</td>
</tr>
<tr>
<td>07H13</td>
<td>サンプルステージ</td>
</tr>
<tr>
<td>07H14</td>
<td>フォトマル用アダプタ</td>
</tr>
<tr>
<td>07H15</td>
<td>高調波セルホルダーの製作</td>
</tr>
<tr>
<td>07H16</td>
<td>Q スイッチマトリックスモジュール</td>
</tr>
<tr>
<td>07H01</td>
<td>サウエカメラ用フィルムホルダー</td>
</tr>
<tr>
<td>07H02</td>
<td>コンタクトピン</td>
</tr>
<tr>
<td>07H03</td>
<td>reducing nipple A 用柱</td>
</tr>
<tr>
<td>07H04</td>
<td>ファイバー用アダプタ</td>
</tr>
<tr>
<td>07H05</td>
<td>仮バーサステーション</td>
</tr>
<tr>
<td>07H06</td>
<td>ESA ソース、ISO フランジ端子溶接</td>
</tr>
<tr>
<td>07H07</td>
<td>ステージ</td>
</tr>
<tr>
<td>07H08</td>
<td>クライオヘッド</td>
</tr>
<tr>
<td>07H09</td>
<td>光学部品修正</td>
</tr>
<tr>
<td>07H10</td>
<td>アダプター</td>
</tr>
<tr>
<td>07H11</td>
<td>磁気ホルププレート</td>
</tr>
<tr>
<td>07H12</td>
<td>磁気ホルププレート</td>
</tr>
<tr>
<td>07J01</td>
<td>円筒</td>
</tr>
<tr>
<td>07J02</td>
<td>キャリプレシジョン</td>
</tr>
<tr>
<td>07J03</td>
<td>透明フレーム</td>
</tr>
<tr>
<td>07J04</td>
<td>アダプター</td>
</tr>
<tr>
<td>07J05</td>
<td>試料ホルダー</td>
</tr>
<tr>
<td>07J06</td>
<td>在来ガスポート</td>
</tr>
<tr>
<td>07J07</td>
<td>BL7U サンプルホルダー</td>
</tr>
<tr>
<td>07J08</td>
<td>BL7U 試料セットアップ台</td>
</tr>
<tr>
<td>07J09</td>
<td>BL7U サンプル保持台</td>
</tr>
<tr>
<td>07J10</td>
<td>グレーティングホルダー</td>
</tr>
<tr>
<td>07J11</td>
<td>粉末 X 線台座スペーサー</td>
</tr>
<tr>
<td>07J12</td>
<td>LEED Sample holder 部品</td>
</tr>
<tr>
<td>07J13</td>
<td>Cold Finger</td>
</tr>
<tr>
<td>07J14</td>
<td>DAC 用ガスケット</td>
</tr>
<tr>
<td>07J15</td>
<td>サンプル台</td>
</tr>
<tr>
<td>07J16</td>
<td>Base 07b</td>
</tr>
<tr>
<td>07J17</td>
<td>コンバーター</td>
</tr>
<tr>
<td>07J18</td>
<td>クライオ用アダプタ</td>
</tr>
<tr>
<td>07J19</td>
<td>神経細胞機能解析プラットホーム [写真]</td>
</tr>
<tr>
<td>07J20</td>
<td>コールドフィンガ</td>
</tr>
<tr>
<td>07J21</td>
<td>低温試料ホルダー</td>
</tr>
<tr>
<td>07J22</td>
<td>クライオスタット用ガスケット</td>
</tr>
<tr>
<td>07J23</td>
<td>フォトマル用アダプタ</td>
</tr>
<tr>
<td>07J24</td>
<td>クライオスタット用スペーサー</td>
</tr>
<tr>
<td>07J25</td>
<td>アダプター</td>
</tr>
<tr>
<td>07J26</td>
<td>タングステンメッシュ溶接</td>
</tr>
<tr>
<td>07J27</td>
<td>試料ホルダー受け</td>
</tr>
<tr>
<td>07J28</td>
<td>CCD カメラ用アダプタ</td>
</tr>
<tr>
<td>07J29</td>
<td>AFM 試料ホルダー</td>
</tr>
</tbody>
</table>

2007 年 工作依頼リスト
2007年 工作依頼リスト

<table>
<thead>
<tr>
<th>伝票番号</th>
<th>品名</th>
</tr>
</thead>
<tbody>
<tr>
<td>07A01</td>
<td>サーボモータ用ドライバユニット [写真]</td>
</tr>
<tr>
<td>07B01</td>
<td>ポジションコンピュータの電源 および計測回路修理</td>
</tr>
<tr>
<td>07B02</td>
<td>二重共鳴実験装置の電源装置</td>
</tr>
<tr>
<td>07C01</td>
<td>細胞観察装置</td>
</tr>
<tr>
<td>07D01</td>
<td>マイクロチップレーザー および計測回路修理</td>
</tr>
<tr>
<td>07E01</td>
<td>メタシ15ケルホルダー</td>
</tr>
<tr>
<td>07E02</td>
<td>貯存装置の計測回路修理</td>
</tr>
<tr>
<td>07G01</td>
<td>フォトダイオード用積算器</td>
</tr>
<tr>
<td>07G02</td>
<td>6KV、16KV サンプルホルダー</td>
</tr>
<tr>
<td>07G03</td>
<td>GP-IB インタフェースソフトウェア</td>
</tr>
</tbody>
</table>
| 07G04 | サンプルホルダー
| 07H01 | 真空検出装置 |
| 07H02 | 真空検出装置 |
| 07H03 | 真空検出装置 |
| 07I01 | 高度試験装置 |
| 07I02 | サンプルホルダー |
| 07J01 | 冷却真空装置 |
| 07J02 | 冷却真空装置 |
| 07J03 | 冷却真空装置 |
| 07J30 | 直線導入機フィルターマウント |
| 07J31 | 光電子分光用部品 |
| 07J32 | ヘッド保持柱 |
| 07J33 | 30％Cu-WヒートシンクVer.4.1 |
| 07J34 | ヘッド保持柱 |
| 07J35 | APD用アタッチメント |
| 07J36 | ガラス加工グループ (22 件) |
| 07J37 | ガラス加工グループ (26 件) |
| 07J38 | ヒートシンクホルダ |
| 07K01 | 偏光子支持台 |
| 07K02 | フランジフィードスルー溶接 |
| 07K03 | 光ファイバー支持台 |
| 07K04 | 25mmPISDアダプタ |
| 07K05 | ESR Q-band用コニオメータホルダアダプタ |
| 07K06 | アダプタ |
| 07K07 | KFフランジ改良（リング） |
| 07K08 | Alホルダー |
| 07K09 | PSD用スタンド |
| 07K10 | Zr/SiNフィルターホルダ |
| 07K11 | ディスプレイ |
| 07K12 | DAC用ガスケット |
| 07K13 | レーザー平野 |
| 07K14 | ゴニオアペックス |
| 07K15 | Tipホルダー、ヒートブロック |
| 07K16 | セルソーター用マイクロ流路 |
| 07K17 | 結晶ホルダー |
| 07K18 | ヒートシンクホルダ |
| 07K19 | MO/Siミラー用マウントパーツ |
| 07K20 | レンズホルダー |
| 07K21 | ヒーラム容器ヘッド改良 |
| 07K22 | 薄型ディスクサンプルホルダー |
| 07K23 | モリブデンメッシュ加工 |
| 07K24 | ヒートストップ |
| 07K25 | 光学用スタンド |
| 07K26 | イオン化室 |
| 07K27 | 溶接（ES2装置） |
| 07K28 | マットホルダ |
| 07L01 | VAT用フィルターホルダー |
| 07L02 | オシレーションステージ |
| 07L03 | ソッド形成素 |
| 07L04 | アダプタ、コンパータ |
| 07L05 | ESR用自動コニオメータ部品 |
| 07L06 | ビエゾアタッチメント |
| 07L07 | Grating Holder |
| 07L08 | 神経細胞機関解析プラットフォームアクリル |
| 07L09 | LEDアダプタ |
| 07L10 | ヒートシンクの穴開け加工 |
| 07L11 | 低温CD台座 |
| 07L12 | 胴板 |
| 07L13 | 空冷エッジ強化小型モノールの設計 |
| 07L14 | 研磨台 |
| 07L15 | バルモラーグリッド |
| 07L16 | バルモラーグリッド |

電子回路グループ（22件）

<table>
<thead>
<tr>
<th>伝票番号</th>
<th>品名</th>
</tr>
</thead>
<tbody>
<tr>
<td>07A01</td>
<td>サーボモータ用ドライバユニット [写真]</td>
</tr>
<tr>
<td>07A02</td>
<td>修理</td>
</tr>
<tr>
<td>07A03</td>
<td>修理</td>
</tr>
<tr>
<td>07A04</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A05</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A06</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A07</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A08</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A09</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A10</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A11</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A12</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A13</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A14</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A15</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A16</td>
<td>サンプルホルダー</td>
</tr>
</tbody>
</table>

ガラス加工グループ（26件）

<table>
<thead>
<tr>
<th>伝票番号</th>
<th>品名</th>
</tr>
</thead>
<tbody>
<tr>
<td>07A01</td>
<td>サーボモータ用ドライバユニット [写真]</td>
</tr>
<tr>
<td>07A02</td>
<td>修理</td>
</tr>
<tr>
<td>07A03</td>
<td>修理</td>
</tr>
<tr>
<td>07A04</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A05</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A06</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A07</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A08</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A09</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A10</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A11</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A12</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A13</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A14</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A15</td>
<td>サンプルホルダー</td>
</tr>
<tr>
<td>07A16</td>
<td>サンプルホルダー</td>
</tr>
</tbody>
</table>

- 44 -
6CH 高速信号加算回路

入力: 6 チャンネル, ±10V
ゲイン: 1
信号帯域: 175MHz

セル・ソーター・コントローラ

セル検出のためのフォトセンサー増幅器
流路切りかえのための電磁バルブ駆動回路
シーケンス制御を司る PIC マイクロ・コントローラで構成

クライオスタット用温度制御回路

温度センサ: 金 - 鉄 - クロメル熱電対
温度範囲: 22K~300K
ヒーター: 60W
2007年 製作品

サーボモータ用ドライバユニット

6台分のサーボモータ用ドライバと駆動用DC電源
EIA規格2Uサイズに集約
表面実装タイプの素子で構成した薄型操作パネル

配向分子の電子運動量分光装置のための多次元同時計測回路

高速ECLゲート回路NIMモジュール
入力:ECL×2/出力:ECL×1、TTL×1
測定可能最小パルス幅:8nsec/最小パルス間隔:10nsec
（詳細記事30ページ掲載）

ネットワーク電圧計 & シリアル-イーサコンバータ

ネットワーク電圧計
入力:0~5V作動入力/取得電圧をwebブラウザで表示
シリアル-イーサコンバータ
RS232C入出力:9pin D-sub(PC互換)
薄型X Yステージ

エポキシ基板銅電極

詳細記事 37 ページ掲載

溝幅 100 μm の
折りかえしつき
経路加工

分子線装置

施設利用
京都大学馬場准教授の
依頼で既存チャンバー
を活用した分子線装置
の製作

分子線スキマー

旋盤加工(切削加工)による分子線
スキマーの製作
先端穴径 φ 0.2mm ～
フランジ外径 φ 10mm ～
テーパー角度 60° 前後の
任意形状に対応

マイクロミキサー

阻止電場型電子検出器

モリブデンメッシュ (#80) と
チャンネルトロンを組み合わ
せた検出装置
現有装置に設置できるように
改良した。

詳細記事 23 ページ掲載

2007 年 製作品
神経細胞培養のための恒温恒湿チャンバー
顕微鏡ステージに組み込まれ一定濃度の炭酸ガスを循環させる。

各々バイオチャンバー

微細加工製作例

高調波セル　タイプⅠ（左上）
パイレックス　φ 10mm
加工穴径　φ 0.2mm

タイプⅡ（左下）
SUS　φ 10mm
ファイバー挿入

タイプⅢ（右下）
マコール　φ 10mm
加工穴径　φ 0.2mm
薄肉テーパー円筒

チャンバー改造

チャンバーに付随する装置類はそのままに ICF253 奥行き 325mm の位置に差動排気用の壁を溶接

− 49 −
中学生職場体験 1

2007年6月14日（木）に、装置開発室エレクトロニクスセクションにて中学生による職場体験を実施し、岡崎市立甲山中学校2年の男子生徒2名を受け入れた。エレクトロニクスセクションでの職場体験受け入れは今回が初めてである。

エレクトロニクスセクションでの業務内容としての電子回路製作を体験してもらうため、ワンチップマイコンのPICを使ってバッテリーチェッカーの製作を行った。製作したバッテリーチェッカーは、PICマイコンのI/Oポートに抵抗とコンデンサーで積分型A/Dコンバーターを構築し、それで単三乾電池の残量を測定する回路である。これは今年度から開始した、職員向け回路工作実習に使用している教材から工作実習の部分だけを抜粋したものである。当日のスケジュールは、午前中に教材についての説明、午後に回路工作の実習を行った。部品の取り付けやハンダ付け作業に苦戦しながらも無事作業を完了させた。一部ハンダ付け不良などで回路が動かないこともあったが、一つずつ問題を解決しながら回路を完成させた。今回の職場体験で、生徒たちが物を作ることの面白さを体験することができたことと期待する。

（内山功一記）
中学生職場体験 2

平成 19 年 8 月 23 日（木）に、装置開発室では中学生による職場体験学習が行われた。今回で装置開発室として職場体験を受け入れたのは 3 例目で、体験学習を行ったのは、竜海中学校 2 年の男子生徒 2 名と女子生徒 1 名の計 3 名である。

装置開発室での一連の業務内容の流れを体験してもらうために、‘真空容器の製作’という架空の工作依頼を想定し、使用する材料の選択方法をはじめ、真空に容器が耐えるための設計方法やその時生じるたわみ量の算出方法を学んだ。先回と異なる項目として、今回は 3 次元 CAD により簡単なモデルをコンピュータ上に作成してもらい、材料の種類、サイズ、形状などによって、その部品がどのように変化するのか、強度は維持されるのか、などの評価を簡易版の解析ソフトウェアを使用して、検討した。このあたりは、学校でコンピュータに触れる機会が多いためか、現代の中学生らしく、一度の説明でコンピュータを使いこなしており、おのの条件を積極的に変えて先に進む姿にはさすがに驚いた。

後日、この件に関するお礼状が届いた。今回の職場体験学習を通じて、‘今中学校で勉強していることが非常に大事だと思いました。’いう旨の感想をいただき、これだけでも今回の職場体験には意義があったと感じている。

(矢野隆行 記)
第 5 回放電加工技術セミナー

今回で第 5 回目を迎える放電加工技術セミナーは、東北大学多元物質科学研究所を開催の舞台として、国立天文台と慶應義塾大学の技術職員各 2 名、計 4 名を新たに加え、総勢 12 名により 2 日間にわたって熱い議論が繰り広げられた。

毎回恒例になっている特別講演は、分子科学研究所になじみの深い高橋正彦准教授により、「多元研機械工場 / 分子研装置開発室と私の研究」というタイトルで行われた。本来、高橋先生の研究内容は、専門外のセミナー参加者にとっては非常に難しい内容であるが、講演の中では原子・分子をより身近に表すため物質の例をビスケットに例えながら、非常にわかりやすく説明していただいた。

発表の中で興味深かったのは、日産自動車総合研究所の野口氏による「水溶性放電加工液開発について」である。これは環境問題を視野に、油中加工用の形影放電加工機を水中加工用に変更した場合に問題となる加工機への影響と、加工精度等への影響を検証し、加工機メーカーと加工液メーカーとの共同開発で新たに水溶性加工液を開発したものであった。

また施設見学では、多元物質科学研究所から道一橋を隔てたところにある東北大学金属材料研究所のテクニカルセンターを中心に拝見させていただき、様々な疑問・質問等に答えていただいた。

特に興味深かったのは、分子科学研究所にはない鍛造工程を担当する部署が存在したことである。エアハンマーを使った鍛造の実演を見たり、セミナー参加者の一部が実際に体験させてもらったりした。見た目には簡単そうに思える作業であるが、実際は非常に難しく、一朝一夕にはいかない。参加者の若手技術者の中には、とても感銘を受けたものもいた。

「鍛造」とは、鍛冶屋とか刀鍛冶を連想すれば、わかっていただけると思うが、金床と呼ばれる台の上で、金属をハンマーで叩きながら必要な形状を造っていく工程をいう。現在では、ハンマーも空気圧や油圧を使わずに変わっているが、基本的な工程は今も昔もさほど変わっていない。鍛造には、形を整えるだけでなく、分子の密度を高めて強固な金属を作ることができる作用がある。それだけに金属材料研究所の新素材開発においては、なくてはならない大事な技術である。しかし、一見「3K」(きつい、汚い、危険) の職場であることや技術の伝承に多くの時間が必要であるために、後継者がいないことが懸念されている。実際に現在正規職員の配置がないのは残念であった。 （矢野隆行 記）
出張報告

微細精密加工技術展 2007 に参加して

近藤聖彦

2007年5月23日〜26日にインテックス大阪で開催された微細精密加工技術展2007に2日間参加した。この技術展は約135の企業などが出展し、6ゾーンに分割されていた。その中でも特に、中小企業をメインとする高度な加工技術を集めた「加工技術・加工部品ゾーン」と工作機械・機器等の企業を集めた「加工機械・関連機械機器ゾーン」について情報収集をこなした。これについて一部を以下に記述する。

前者においては、難削材とされているガラス切断の技術を各企業が競い合い、ガラスに微細な加工を施した展示品が公開されていたが、その撮影は禁止であった。また、この加工方法などは社内秘ということで詳細な情報を得ることはできなかった。これについて一部を以下に記述する。

後者においては、我々が挑戦しているマイクロ加工に関する情報を得ることができた。特に、マイクロ加工においては加工精度も重要であるが、加工時にできるバリの除去が問題となり各企業がさまざまな手法で対処していることがわかった。このような展示以外にもいくつかのワークショップも開催されており、筆者は（株）中田製作所の「超精密・超微細加工への挑戦」を聴講し、材質A5052で板厚20μmにφ5μmの穴を連続加工で30個あける微小穴加工技術、材質A5052で幅10μm、高さ20μmの壁を残す微細壁切断加工技術、材質A5052で溝幅100μm、深さ300μm、ピッチ400μmの微細溝切断加工技術などの情報を得ることができた。

この技術展に参加し、我々の日常業務におけるヒントが多くあったように思う。また、この参加を有意義なものにするため、知り得た情報を業務に取り込んでいくようにこころがけたい。
中 - 日シンポジウム（China-Japan Symposium of Nano-Chemical Biology）に参加して

水谷伸雄 吉田久史

2007年11月9〜10日、中国北京で中 - 日シンポジウムが開催された。このシンポジウムは、中国科学院化学研究所の万立駿（Wan Li-jun）所長と分子科学研究所生体分子情報部門の宇理須恒雄教授がそれぞれ代表を務め「先端ナノバイオエレクトロニクスの研究」をテーマに中国側7名、日本側8名の計15名による討論会が行われた。日本からは、分子研、生理研をはじめ、横浜国立大学、京都大学、東北大学から若手研究者を中心に参加し、その研究成果が報告された。

装置開発室では近年、超精密・微細加工技術を必要とするバイオ関連の依頼工作が増加し、特に宇理須教授のグループからは、バイオセンサー・バイオチャンバー・生体分子解析用赤外分光器・顕微鏡システム・イオンチャンネル計測用パッチクランプアンプなどの相談を受け設計製作が進められている。今回はバイオ研究の最新技術情報を収集する事で今後の実験装置開発に役立てるために、吉田技術班長と私がシンポジウムに参加することになった。また同時に、中国科学院化学研究所の先端的な実験装置や装置作りのための技術支援体制についても見聞を広げたいと考えた。

中国科学院化学研究所は、北京の中心の天安門広場から北西に約20kmの所にあり、化説大学と清華大学が隣接している。1956年に設立され50年以上の歴史があり、1000名以上の人々が研究に関わっている。また、北京の北東に位置する北京首都国際空港からは40km近い距離があるものの、整備された高速道路により研究所までのアクセスは良好で、私が持っていた中国のイメージとはかけ離れたものだった。当日は、空港まで研究所のマイクロバスが迎えにきており、ホテルまで案内された。行きの飛行機は夕方空港に着いたため、ホテルのチェックインを済ませる頃には日もすっかり暮れてしまい、早々に夕食を取り翌日からのシンポジウムに備えた。翌朝もマイクロバスの送迎によりホテルから研究所まで移動したが、その間の5〜6kmには、いくつかの大学があり学生らしき人々の熱気であふれていて“中国”を感じた。一昨年50周年を迎えたとは言え、中国科学院化学研究所は真新しい建物ばかりが立ち並び、その中の一室でシンポジウムは行われた。シンポジウム

シンポジウム風景

これまでの中国とはかけ離れたイメージの高速道路網と中国らしい料金所ゲート
の合間には、所長自ら研究室を案内していただき現在の状況や研究成果などの説明を受けた。建物の一角には、研究所50年の歴史を展示するコーナーがあり設立当初の資料やこれまでの業績が紹介されていた。シンポジウムの発表が進む中、私たち二人は特別に実験室を見学させていただいた。いえにも化学系の研究所らしく市販の実験装置や測定器が整然と配置されていた。

筆者は20年前に中国の大連を訪れた事があるが、その時に感じたのは、“30年後の日本は中国に追い抜かれているのではないか”という気持ちだった。今回、北京を訪れその気持ちはさらに強い物となった。中国科学院化学研究所で我々が目の当たりにしたのは、最近の中国の急激な経済成長を受けてか研究所には新しい実験装置が導入され、そこには熱意を持った多くの学生・研究者が関わっている事だった。もちろんそれだけで研究所の良し悪しと言った訳ではないが、現時点でのこの勢いには、かなわない物を感じた。

中国科学院化学研究所では、何年か前に所内の工作部門を閉鎖したと聞いた。残念な事だが5年か10年先にはその影響が現れる事だろう。現状での時間を争うような研究とは別に、独創的な研究を押進めようとする研究者に対して技術面でサポートして行く体制のあり方は今後も問われ続ける問題かも知れない。今後とも、技術者と研究者の連携のもとに新しい発想が展開して行く事を期待すると同時に、技術者とし将来に向け、今何をしておくべきかを考えさせられる機会となった。

今回の出張にあたり、事務的な手続きを細かく面倒みていただいた方々に感謝します。また、滞在中は、空港に着いた時から空港を発つまでの間、中国科学院化学研究所の職員や先生方には大変お世話になって、帰国の日も早朝の飛行機に間に合うよう早いうちから空港まで送っていただき、飛行機の向こうから昇る朝日に向けて迎えを取りながら帰国の途についた。
電子ビーム溶接機大規模メンテナンス

装置開発室の主要な加工設備の中に電子ビーム溶接機（Electronic Beam Welder: EBW）がある。この溶接機は分子研創設の頃 1978 年に装置開発棟が竣工し、工作室戻移に伴って新規に加工設備として導入されたものである。その後 30 年の間、現在も分子科学の研究装置製作に活躍している。当時から異種金属の接合には数多く用いられ、クライオスタットのコールドヘッドの製作にはよく利用されるステンレス鋼と銅を溶接してきた。EBW による接合は銀ろう付けで製作したものに比べて、リークの発生が少なく、室温からヘリウム温度までの熱サイクルにも耐え長寿命となる信頼性があった。これ以外にも異種金属接合としてステンレス鋼と貴金属の銀との接合など、装置製作の多くの加工工程の中で重要な役割の一つを果たしている。

また、近年では収束したビームの特徴を生かし手作業の溶接では困難な微細部の溶接にも多く用いられ、その活用の範囲は広い。

この溶接機は 30 年前の機械であっても溶接の原理は至って簡単なため、現行の溶接機と性能はほとんど等価を使うことができる。さらに装置開発室では、自動車工場の様に毎日同じ部品の大量生産用に使う訳ではないので、比較的故障も少なく長い間使うことができていた。ところが、2006 年の末に施設利用の依頼で X 線望遠鏡の一体型ミラーシェルの試作を EBW で行う事がになり、これまでに経験の無いアルミ薄板の直線溶接を試す事になった。この時に、30 年ものの機械が微妙に障害となる場面が見えてきた。これまで溶接構造物は、回転テーブルを使った円筒外周または円周状に溶接する事で多かったため、線状の溶接のために直線駆動装置はほとんど使用されていなかった。アリミ薄板溶接の実験を行うために直線駆動用のテーブルを常におかずとしたところ、まったく動く気配が見られない。いよいよここから溶接機との奮闘が始まった。直線駆動テーブルはモーターからゴムベルトで伝達しており、長い間使いていなかったのでゴムベルトが朽ち果てていた。また一部のネジのグリスが固まってタールのような状態にあり、電磁リレーの不良が見つかったり、次から次へと不具合が発見されていった。この辺りの不具合は電子ビーム溶接機の周辺部品の話だが、電子ビームの品質も溶接実験を進めていくとビーム電流の 1mA 以下の小電流調整が不安定で溶接実験が思うように進められなかった。そこまで来るといよいよ費用を割けて大規模なメンテナンスをメーカー依頼したほうが良いと判断させられた。こうして 2007 年の 4 月 25 日から 26 日の 2 日間で散ってメーカーによるメンテナンス作業が実施された。

今回のメンテナンス作業で最も苦労したのは、電源内部の部品点検修理のために電源ユニットを少なくとも現状から高さ 80cm ほど上で吊り下げた状態にし
やぐらの組立が終わって、いよいよ電源ユニットを引き上げる作業に入ったところ。チェーンブロックの取り付けている梁は荷重に耐えてくれるか、足場の柱の強度は大丈夫か、緊張する作業である。すぐ横にはスパッタ装置が置いてある。

姿を現した高圧電源部。絶縁オイルの劣化はまだ無いようだ。碍子などもまだ新品同様である。

やぐらの組立が終わって、いよいよ電源ユニットを引き上げる作業に入ったところ。チェーンブロックの取り付けている梁は荷重に耐えてくれるか、足場の柱の強度は大丈夫か、緊張する作業である。すぐ横にはスパッタ装置が置いてある。

姿を現した高圧電源部。絶縁オイルの劣化はまだ無いようだ。碍子などもまだ新品同様である。

点検修理作業
さらにあと 30 年は使いたい。

てほしいという要請であった。高圧発生用の電源（絶縁オイルに浸された大きなトランスなど）重量は約 800kg あり、設置の部屋には天井クレーンがないので、どこかに少なくとも 1t 程度の吊り下げ用チェーンブロック等を準備する必要があった。電子ビーム溶接機が設置されている部屋は、導入された当時はこの溶接機だけで、他に機器類はなにもなく広々としていた。現在はスパッタ装置や電気炉などが置かれ、たいへん窮屈な状態である。そこで、写真のように建設足場用資材でやぐらを組み上げ、チェーンブロックを取り付ける苦労の手段を講じた。足場資材の強度や取り付け部品の耐荷重、作業スペースの確保など、やぐらの構造はいづれ考えさせられた。今、写真を改めて見ると、このやぐらはけっこう傑作である。ここまで準備を整えることで、メーカーの派遣作業員は最小の人員で、しかも 2 日間と最短の時間で作業を終えることができた。

以上のように、このメンテナンス作業は、長い準備期間と、多くの人手、経費が掛かっているので、記録に残すためにも本誌の記事として掲載させて頂いた。
このメンテナンスにまつわるエピソードを一つ紹介したい。溶接機のメーカーは NEC（日本電気）であるが、現在、電子ビーム溶接機の取扱は NEC の関連会社へ移され、さらに製造およびメンテナンスはまたその関連会社である高和電気工業株式会社に委託されている（ブランドは NEC のままであるが）。その担当者と事前の準備や溶接機の症状などを電子メールでやり取りしていたメールのCcに時々「塚本部長_高和EBW」の記述が見受けられた。この「塚本」という名前は、電子ビーム溶接機を修理している際に取扱説明書に添付の構造図面、回路図面の設計者の欄に書かれていたので、同じ名前だなと少々気になっていた。なぜ、動作不良の部品を探すため回路図面や構造図は穴が空くほど見ていたのでよく覚えていた。メンテナンス作業実施の直前に神奈川にある高和電気工業（株）に出向いて最終打ち合わせを行うことにした。先方の会社では今回作業の担当者ももう1人、例の「塚本部長_高和EBW」ご本人とで打ち合わせを始めることになった。途中、図面の設計者の欄にある「塚本」について伺ってみたところ、やはりご本人であった。分子研に納められている電子ビーム溶接機については、特に思い出があるそうだ。当時まだ NEC の若きエンジニアとして仕事をされている頃で、新婚旅行の直前ぎりぎりまで設計図面を書いていた溶接機が分子研向けのこの溶接機であるのだ。「まだ、お使い頂けているとは嬉しい話ですね、てっきり伊勢湾の海底で魚礁にでもなっていると思っていましたよ」と塚本部長は懐かしそうにおっしゃった。その後しばらく四方山話で時間は流れだった。

（鈴井光一 記）